Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(32): 45353-45369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963631

RESUMO

Due to the frequent detection and potential toxicity of moxifloxacin (MOX), its removal technology had attracted attention in recent years. In this research, CuFeS2/MXene was prepared and used to activate peroxymonosulfate (PMS) to remove MOX. The degradation efficiencies, kinetics, influences, and reaction mechanism of MOX by CuFeS2/MXene/PMS were investigated. The synergistic effect of CuFeS2 and MXene significantly enhanced PMS activation, producing SO4•-, HO•, and 1O2 as the main active species. By adding 0.12 g/L CuFeS2/MXene and 0.12 mM PMS, MOX removal efficiency reached 99.1% within 40 min, with a rate constant of 0.1073 min-1. The composite ratios of CuFeS2/MXene impacted PMS activation more significantly than catalyst dosages and PMS concentrations. Acidic conditions were favorable for the degradation of MOX, while HCO3-, HPO42-, Mn2+, and HA had the inhibitory effects. Twelve major products were detected by HPLC-MS, and DFT was used to illustrate possible degradation pathways of MOX, including the removal of nitrogen-containing heterocycle and transformations of quinolone moieties. Toxicity analysis showed that the developmental toxicity, mutagenicity, and acute toxicity of degradation products tended to decrease. CuFeS2/MXene could exhibit excellent reusability, maintaining an average MOX degradation efficiency of 90.8% in the 7-cycle experiments.


Assuntos
Moxifloxacina , Poluentes Químicos da Água , Cobre/química , Peróxidos/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA