RESUMO
Iron (Fe) modified biochar has been widely used for cadmium (Cd) contaminated soil remediation. However, the accompanying anions introduced during the modification process potentially affect the behavior of Cd in soil. In this study, we investigated the distinct Cd immobilization mechanisms by Fe2(SO4)3 modified biochar (FSBC) and Fe(NO3)3 modified biochar (FNBC) in a two-year pot experiment. Results showed that both FSBC and FNBC significantly reduced Cd concentrations in rice grains by 23%-42% and 30%-37% compared to pristine biochar (BC). Specifically, NFBC promoted the formation of amorphous Fe oxides by enhancing the NO3--reducing Fe(II) oxidation process, which significantly increased Fe/Mn oxide-bound Cd and decreased soil CaCl2-extractable Cd. For FSBC, the introduction of SO42- significantly promoted the formation of Fe plaques by enhancing the Fe(III) reduction process, which blocked the Cd transfer from the soil to the rice roots. More importantly, after two years of biochar application, an organo-mineral complex layer is formed on the biochar surface, which immobilized a large amount of Cd. The Cd immobilization on the surface of aged biochar could be due to the fixation by the secondary Fe oxides within the organo-mineral layer and the complexation by the surface functional groups. The result of laser ablation inductively coupled plasma mass spectrometry showed that the Cd content on aged FNBC and FSBC was 5.9 and 2.6 times higher than on aged BC. This might be attributed to the Fe-modified biochar's higher electron exchange capability (EEC), which promoted the development of organo-mineral complexes. Notably, the EEC of biochar was maintained during its aging process, which may keep the biochar surface active and facilitate continual Cd immobilization. This study revealed the complex mechanisms of soil Cd immobilization with Fe-modified biochar, providing new insights into sustainable biochar environmental remediation.
RESUMO
Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-ß, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-ß.
Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hipofaríngeas , Invasividade Neoplásica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apoptose , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , FemininoRESUMO
Severe global climate change has resulted in the focus of social attention shifting to the manufacturing industry's low-carbon transformation. Digital intelligent transformation (DIT) in enterprises is identified as a crucial driver in mitigating carbon emissions. An estimation of DIT's impact on manufacturing industries' carbon emission intensity (CEI) and its underlying mechanisms was conducted using data from Chinese A-share listed companies. Research findings indicate that DIT significantly reduces corporate CEI. Robustness tests, such as the instrumental variable method and variable substitution method, confirm this conclusion. By enhancing labor productivity and accelerating capital renewal, DIT indirectly lowers CEI. Furthermore, non-state-owned enterprises with superior market competitiveness have been observed to be markedly adept at harnessing DIT for CEI. The heterogeneity test found that DIT has a considerably significant effect on reducing CEI in enterprises that are not low-carbon pilots, non-broadband pilots, smart pilots, non-provincial capitals, and eastern cities. This study provides new evidence supporting the promotion of enterprise DIT for achieving green development, offering insights for corporate policy making.
Assuntos
Carbono , Mudança Climática , Indústria ManufatureiraRESUMO
Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.
Assuntos
Arachis , Carvão Vegetal , Fixação de Nitrogênio , Raízes de Plantas , Solo , Arachis/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fertilizantes , EstercoRESUMO
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive, heterogeneous tumour usually caused by alcohol and tobacco consumption, making it one of the most common malignancies worldwide. Despite the fact that various therapeutic approaches such as surgery, radiation therapy (RT), chemotherapy (CT) and targeted therapy have been widely used for HNSCC in recent years, its recurrence rate and mortality rate remain high. RT is the standard treatment choice for HNSCC, which induces reactive oxygen species production and causes oxidative stress, ultimately leading to tumour cell death. CT is a widely recognized form of cancer treatment that treats a variety of cancers by eliminating cancer cells and preventing them from reproducing. Immune checkpoint inhibitor and epidermal growth factor receptor are important in the treatment of recurrent or metastatic HNSCC. Iron death, a type of cell death regulated by peroxidative damage to phospholipids containing polyunsaturated fatty acids in cell membranes, has been found to be a relevant death response triggered by tumour RT in recent years. In the present review, an overview of the current knowledge on RT and combination therapy and iron death in HNSCC was provided, the mechanisms by which RT induces iron death in tumour cells were summarized, and therapeutic strategies to target iron death in HNSCC were explored. The current review provided important information for future studies of iron death in the treatment of HNSCC.
Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia Combinada , FerroRESUMO
Recent years have witnessed growing public concern over air pollution in China, posing a challenge to the government's environmental management efforts. Empirical evidence indicates that the digital economy contributes to mitigating environmental pollution. Given that national audits are a crucial part of the national oversight system and considering the significant role of digital technology in audit governance, it is relevant to explore how the digital economy can support national audits in enhancing China's environmental quality. This study investigates the environmental impact of national audit governance, utilizing a dataset from 1540 counties in China spanning from 2005 to 2018. The findings reveal that effective national audits contribute to reducing haze pollution (HP) levels, with the digital economy playing a moderating role. The results also demonstrate heterogeneity; national audits are particularly effective in regions characterized by high urbanization rates, severe HP, and stringent environmental regulations. The mechanism analysis suggests that industrial transformation and enhanced government governance are the key mechanisms through which national audits reduce regional HP. Additionally, reforming the audit management system can amplify the effects of national audits on reducing HP.
Assuntos
Poluição do Ar , China , Poluição do Ar/legislação & jurisprudência , Governo , UrbanizaçãoRESUMO
Ultramicroporous metal-organic frameworks (MOFs) are demonstrated to be advantageous for the separation and purification of light hydrocarbons such as C2H2, C2H4, and CH4. The introduction of transition metal sites with strong π-complexation affinity into MOFs is more effective than other adsorption sites for the selective adsorption of π-electron-rich unsaturated hydrocarbon gases from their mixtures. However, lower coordination numbers make it challenging to produce robust MOFs directly utilizing metal ions with π-coordination activity, such as Cu+, Ag+, and Pd2+. Herein, a series of novel π-complexing MOFs (SNNU-33s) with a pore size of 4.6 Å are precisely constructed by cleverly introducing symmetrically matched C3-type [Cu(pyz)3] (pyz = pyrazine) coordinated fragments into 1D hexagonal channels of MIL-88 prototype frameworks. Benifit from the spatial confinement combined with π-complex-active Cu+ of [Cu(pyz)3], pore-space-partitioned SNNU-33 MOFs all present excellent C2H2/CH4, C2H4/CH4, and CO2/CH4 separation ability. Notably, the optimized SNNU-33b adsorbent demonstrates top-level IAST selectivity values for C2H2/CH4 (597.4) and C2H4/CH4 (69.8), as well as excellent breakthrough performance. Theoretical calculations further reveal that such benchmark light hydrocarbon separation and purification ability is mainly ascribed to the extra-strong binding affinity between Cu+ and π-electron donor molecules via a spatially confined π-complexation process.
RESUMO
Biochar and modified biochar have gained wide attention for Cd-contaminated soil remediation. This study investigates the effects of rape straw biochar (RSB), sulfur-iron modified biochar (S-FeBC), and nitrogen-iron modified biochar (N-FeBC) on soil Fe oxide transformation and Cd immobilization. The mediated electrochemical analysis results showed that Fe modification effectively enhanced the electron exchange capacity (EEC) of biochar. After 40 days of anaerobic incubation, compared to the treatment without biochar (CK), the concentrations of CaCl2-extractable Cd in N-FeBC, S-FeBC, and RSB treatments decreased by 79%, 53%, and 23%, respectively. Compared with S-FeBC, N-FeBC significantly decreased the soil Eh and increased soil pH within the first 15 days, which could be attributed to its higher EEC and alkalinity. There is a negative correlation between the concentration of CaCl2-extractable Cd and soil pH (p < 0.01). The sequential extraction results showed that both N-FeBC and S-FeBC promoted Cd transfer from acid-soluble to Fe/Mn oxides bound fraction (Fe/Mn-Cd). N-FeBC significantly increased the concentration of amorphous Fe oxides (amFeox) from 4.0 g kg-1 in day 1 to 4.6 g kg-1 in day 15 by promoting the NO3--reducing Fe(II) oxidation process, while S-FeBC significantly increased amFeox from 4.0 g kg-1 in day 15 to 4.8 g kg-1 in day 40 by promoting the Fe(II) recrystallization. There is a positive correlation between the concentration of amFeox and Fe/Mn-Cd (p < 0.01). The scanning electron microscopy analysis showed that Cd was bound to the amFeox coating on the surface of Fe-modified biochar. By acting as an electron shuttle, the active surface of Fe-modified biochar may serve as a hotspot for Fe transformation, which promotes amFeox formation and Cd immobilization. This study highlights the potential of Fe-modified biochar for the remediation of Cd-contaminated soils and provides valuable insights into the development of effective remediation approaches for Cd-contaminated soils.
Assuntos
Poluentes do Solo , Solo , Solo/química , Cádmio/análise , Óxidos/química , Cloreto de Cálcio , Poluentes do Solo/análise , Carvão Vegetal/química , Ferro/química , Oxirredução , Compostos FerrososRESUMO
BACKGROUND: Spindle cell tumors are rare and can occur in any organ or tissue. Due to their rarity the clinicopathological features and diagnostic protocols have not been adequately studied. However, it has become necessary to develop differential diagnosis of spindle cell tumors. Here, we report a case of a nasal spindle cell tumor diagnosed at our hospital in attempt to contribute to this gap in literature. KEY POINTS FROM THE CASE: A male in his 30s was admitted to our hospital with nasal obstruction that had persisted for several years. Electronic fibrolaryngoscopy revealed a smooth neoplasm within the nasal cavity. MAIN LESSONS TO BE LEARNED FROM THIS CASE REPORT: The results of this case emphasize that spindle cell tumors have large morphological variations, and it is difficult to determine the origin of tumor cells using hematoxylin and eosin staining alone. Therefore, it is necessary to improve the immunohistochemistry and combine it with clinical symptoms to diagnose the disease.
Assuntos
Obstrução Nasal , Neoplasias Nasais , Humanos , Masculino , Cavidade Nasal/patologia , Imuno-Histoquímica , Neoplasias Nasais/diagnóstico , Neoplasias Nasais/patologia , Obstrução Nasal/etiologia , Diagnóstico DiferencialRESUMO
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CîN double bonds and the construction of new C-N and CîN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
RESUMO
Massive amount of food waste has been generated annually, posing a threat to ecological sustainability and the social economy due to current disposal methods. Urgent action is needed worldwide to convert the traditional pathway for treating food waste into a sustainable bioeconomy, as this will significantly benefit food chain management. This study explores the use of pyrolysis to produce different types of food waste biochars and investigates their adsorption capabilities for removing Cd2+ and Pb2+ in aqueous solution. The results indicated that co-pyrolysis biochar from fresh food waste and rice husk (FWRB) exhibited superior adsorption performance for Cd2+ (61.84 mg·g-1) and Pb2+ (245.52 mg·g-1), respectively. Pseudo-second-order kinetics (0.74 ≤ R2 ≤ 0.98) and Langmuir isotherms (0.87 ≤ R2 ≤ 0.98) indicated that the immobilized Cd2+ and Pb2+ on biochars were mainly attributed to the chemisorption, including precipitation with minerals (e.g., carbonates, silicates, and phosphate), complexation with functional groups (-OH), cation exchange (-COO-), and coordination with π-electrons. Furthermore, FWRB demonstrated reduced EC and Na content in comparison to food waste digestate biochar (FWDB) and food waste digestate co-pyrolysis with sawdust biochar (FWSB), with levels of Cd and Pb falling below China's current guideline thresholds. These findings suggested that co-pyrolysis of fresh food waste with rice husk could be applicable to the recycling of food waste into biochar products for heavy metal stabilization in contaminated water and soils.
Assuntos
Cádmio , Eliminação de Resíduos , Cádmio/análise , Perda e Desperdício de Alimentos , Chumbo , Alimentos , Carvão Vegetal , Adsorção , ÁguaRESUMO
Low-grade myofibroblastic sarcoma (LGMS) is a rare malignant mesenchymal tumor derived from myofibroblasts. It is commonly identified in the head and neck, and particularly in the oral cavity, but rarely in the larynx. In this case report, we describe a patient who presented with hoarseness and underwent electronic fiber laryngoscopy, which revealed a neoplasm on the surface of his left vocal cord. The vocal cord tumor was resected under general anesthesia, and a malignant LGMS was diagnosed on postoperative pathologic examination. The results of immunohistochemical staining of the sections for vimentin (diffuse +), actin (partial +), and desmin (-) were consistent with this diagnosis. The patient recovered well after the surgery, and there was no recurrence of the neoplasm.
Assuntos
Laringe , Sarcoma , Humanos , Laringe/diagnóstico por imagem , Laringe/cirurgia , Prega Vocal , Laringoscopia , Sarcoma/diagnóstico , Sarcoma/cirurgia , BocaRESUMO
For high-quality development, inclusive green growth (IGG) is a crucial strategic option. Given the deceleration in economic growth, monetary policy has several obligations, including stabilizing growth, changing structure, and mitigating risks. However, frequent revisions of monetary policy may diminish its regulatory efficacy due to resulting uncertainty. Accordingly, this study reveals the mechanism of the impact of monetary policy uncertainty (MPU) on IGG. Research suggests that MPU significantly inhibits IGG in the region, as demonstrated by robustness tests. Mechanism test reveal that MPU inhibits IGG by reducing green finance, ecological innovation, media attention, and employment levels. These four transmission mechanisms all show a masking effect. Additionally, further tests show that under different levels of green finance, ecological innovation, media attention, and employment, the impact of MPU on IGG is nonlinear. Heterogeneity analyses also indicate that the inhibition of MPU is weaker in cities with high scientific and technological progress and local fiscal expenditure. Finally, quantile regression demonstrates that the restraining effect of MPU diminishes before rising. This study contributes to the advancement of MPU research, provides a solid foundation for formulating, modifying, and executing monetary policy, and serves as a valuable resource for promoting IGG.
Assuntos
Desenvolvimento Econômico , Políticas , Incerteza , Cidades , Imunoglobulina G , ChinaRESUMO
Hamartomas are benign tumors characterized by an abnormal combination and arrangement of normal tissues during development. It is more common in lung, gastrointestinal tract and other parts, rare in the head and neck, such as oral cavity, nasal cavity, nasopharynx, etc. This case report describes a patient with nasopharyngeal hamartoma who presented with headache and rhinorrhea and was confirmed to have smooth nasopharyngeal neoplasm by electronic fibro laryngoscopy. After admission, the nasopharyngeal neoplasm was removed under general anesthesia and was postoperatively diagnosed as a hamartoma polyp. The patient recovered well postoperatively.
RESUMO
Cd is normally associated with sulfide and Fe oxides in flooded paddy soil. The mechanisms of biochar enhanced Cd immobilization by promoting Fe transformation and sulfide formation are unclear. Rape straw biochar (RSB) pyrolyzed at 450 °C (LB) and 800 °C (HB) was added to Cd-contaminated paddy soil at 1% (LB1, HB1) and 2% (LB2, HB2) doses. The results showed that Fe/Mn oxide-Cd (Fe/Mn-Cd) and free Fe oxide (Fed) concentrations decreased in the first 12 days and then rose, while Fe2+ in pore water (W-Fe2+) tended to rise first and then fall. The electron transfer rate of soil in the HB2 treatment was 4.9-fold higher than that in the treatment without biochar (CK). Fe oxide reduction was enhanced by RSB, with a maximum increase in W-Fe2+ by 62.1% in HB2 on Day 12. The negative correlation between W-Fe2+ and Fed showed that Fe2+ promoted the reformatted of seconded Fe minerals after Day 12, and the Fed in the HB2 treatments increased by 31.5% in this period. RSB addition also promoted the reformation of poorly crystallized Fe oxide (Feo) by increasing soil pH, which increased by 17.2% and 15.1% on average in the LB2 and HB2 treatments, respectively, compared to CK. Compared to Day 7, the increased rate of Fe/Mn-Cd on Day 30 in RSB was approximately twice that of CK. Compared to the molybdate group, the maximum decrease in CaCl2-Cd was 29.1% in LB2 on Day 12. LB2 increased SO42- and acid-volatile sulfide concentrations by 6.9- and 4.1-fold, respectively, compared to CK. These results suggested that RSB, particularly HB, promoted more Cd adsorption in Fe minerals by increasing Fe hydroxylation and recrystallization processes. LB increased the contribution of sulfide to Cd immobility.
Assuntos
Oryza , Poluentes do Solo , Solo/química , Cádmio/química , Óxidos/química , Carvão Vegetal/química , Enxofre , Poluentes do Solo/análise , Oryza/químicaRESUMO
Pig manure could be an effective fertilizer source for soil, but with high concentrations of xic elements. It has been shown that the pyrolysis method could largely reduce the environmental risk of pig manure. However, the comprehensive analysis of both toxic metals immobilization effect and environmental risk of pig manure biochar applied as a soil amendment is rarely addressed. To address the knowledge gap, this study was carried out with pig manure (PM) and pig manure biochar (PMB). The PM was pyrolyzed at 450 â and 700 â, the corresponding biochar was abbreviated as PMB450 and PMB700, respectively. The PM and PMB were applied in a pot experiment growing Chinese cabbage (Brassica rape L. ssp. Pekinensis) with clay-loam paddy soil. The application rates of PM were set at 0.5% (S), 2% (L), 4% (M) and 6% (H). With the equivalent mass principle, PMB450 and PMB700 were applied at 0.23% (S), 0.92% (L), 1.84% (M), 2.76% (H), and 0.192% (S), 0.7% (L), 1.4% (M), 2.1% (H), respectively. Parameters of Chinese cabbage biomass and quality, total and available concentrations of toxic metals in soil, and soil chemical properties were systemically measured. The main results of this study showed that compared with PM, PMB700 was more effective than PMB450, which induced the highest reductions of Cu, Zn, Pb, and Cd contents in cabbage by 62.6%, 73.0%, 43.9%, and 74.3%, respectively. Both PM and PMB increased the total contents of metals (Cu, Zn, Pb, and Cd) in soil, and PMB decreased the mobility of Cu, Zn, Pb, and Cd at high application rates (≥2%). Treatment with H-PMB700 reduced CaCl2 extractable Cu, Zn, Pb, and Cd by 70.0%, 71.6%, 23.3%, and 15.9%, respectively. For Cu, Zn, Pb, and Cd fractions with BCR extraction, PMB treatments, especially PMB700, were more effective than PM in decreasing the available fractions (F1 +F2 +F3) at high application rates (≥2%). Overall, pyrolysis with high temperature (e.g., 700 â) could significantly stabilize the toxic elements in PM and enhance PM's effect on toxic metals immobilization. The marked effects of PMB700 on toxic metal immobilization and cabbage quality improvement might be attributed to high ash contents and liming effect.
Assuntos
Brassica , Metais Pesados , Poluentes do Solo , Suínos , Animais , Metais Pesados/análise , Cádmio/análise , Esterco/análise , Chumbo/análise , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/químicaRESUMO
Projected global climate change is a potential threat to nutrient utilization in agroecosystems. However, the combined effects of elevated [CO2] and canopy warming on plant nutrient concentrations and translocations are not well understood. Here we conducted an open-air field experiment to investigate the impact of factorial elevated [CO2] (up to 500 µmol mol-1) and canopy air warming (+2°C) on nutrient (N, P, and K) status during the wheat growing season in a winter wheat field. Compared to ambient conditions, soil nutrient status was generally unchanged under elevated [CO2] and canopy warming. In contrast, elevated [CO2] decreased K concentrations by 11.0% and 11.5% in plant shoot and root, respectively, but had no impact on N or P concentration. Canopy warming increased shoot N, P and K concentrations by 8.9%, 7.5% and 15.0%, but decreased root N, P, and K concentrations by 12.3%, 9.0% and 31.6%, respectively. Accordingly, canopy warming rather than elevated [CO2] increased respectively N, P and K transfer coefficients (defined as the ratio of nutrient concentrations in the shoot to root) by 22.2%, 27.9% and 84.3%, which illustrated that canopy warming played a more important role in nutrient translocation from belowground to aboveground than elevated [CO2]. These results suggested that the response of nutrient dynamics was more sensitive in plants than in soil under climate change.
RESUMO
Co-pyrolysis is a potentially effective method for both biomass waste management and multi-functional biochar-based product design. It involves the thermochemical decomposition of biomass waste under anoxic conditions, which can reduce the cost of disposal and produce biochar with beneficial properties. Herein, this study aimed to investigate the properties and environmental applications of biochar from single- and mixed- feedstocks of wheat straw, rice husk, pig manure, and oyster shell at 450 â, respectively. A pot experiment with Chinese cabbage was carried out to compare the effects of biochars with limestone on soil Cd and Pb immobilization at two harvest periods. The results indicated that co-pyrolysis of various biomasses exhibited synthetic effects on promoting the calorific value of syngas and enhancing the quality of produced biochar. The pot experiment revealed a significant promotion on soil pH, soil organic matter, cation exchange capacity, and soluble Ca, which consequently reduced Cd and Pb availability. In contrast with limestone treatment, soil amendment with single biomass-derived and co-pyrolysis-derived (COPB) biochars had a significant positive impact on soil fertility and microbial biomass. Application of COPB at a 0.5% dosage consistently and most effectively enhanced the shoot biomass, increased leaf Vitamin C content but reduced leaf content of nitrate and heavy metals in both harvests. Using COPB for soil remediation would be financially visible due to the enhancement of crop yield. Therefore, this study proposes a strategy for targeted enhancement of the functions of biochar derived from co-pyrolysis of selected biomass waste for soil remediation and agricultural production.
Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Animais , Suínos , Cádmio , Pirólise , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Oryza/químicaRESUMO
Aiming at the shortcomings of most existing control strategies for lower limb rehabilitation robots that are difficult to guarantee trajectory tracking effect and active participation of the patient, this paper proposes a force/position-based velocity control (FPVC) strategy for the hybrid end-effector lower limb rehabilitation robot (HE-LRR) during active training. The configuration of HE-LRR is described and the inverse Jacobian analysis is carried out. Then, the FPVC strategy design is introduced in detail, including normal velocity planning and tangential velocity planning. The experimental platform for the HE-LRR system is presented. A series of experiments are conducted to validate the FPVC strategy's performance, including trajectory measurement experiments, force and velocity measurement experiments, and active participation experiments. Experimental studies show that the end effector possesses good following performance with the reference trajectory and the desired velocity, and the active participation of subjects can be adjusted by the control strategy parameters. The experiments have verified the rationality of the FPVC strategy, which can meet the requirements of trajectory tracking effect and active participation, indicating its good application prospects in the patient's robot-assisted active training.
RESUMO
Amyloidosis is a disease caused by amyloid deposition in tissues or organs. According to the extent of the lesion, it can be divided into systemic amyloidosis and localized amyloidosis. Amyloidosis originating in the larynx accounts for approximately 0.5% to 1.0% of benign lesions of the larynx; such lesions are relatively rare and mostly localized. Nasopharyngeal amyloidosis combined with laryngeal amyloidosis is even rarer. We herein present a case involving a patient with amyloidosis in the nasopharynx and larynx who presented with a foreign body sensation and hoarseness in the pharynx. Electronic fiber laryngoscopy revealed a smooth neoplasm in the left nasopharynx and left vocal cord. The patient underwent surgical treatment, and the postoperative pathologic examination results suggested amyloidosis. Special staining performed using Congo red and crystal violet was positive, confirming amyloidosis. The patient recovered after surgery, and no recurrence was present at the 3- and 6-month follow-ups.