Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Trends Plant Sci ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39107204

RESUMO

Although transgenic Bacillus thuringiensis (Bt) crops have brought various ecological and socioeconomic benefits, there is evidence suggesting that pests will eventually develop resistance to Bt crops. Thus, additional genes are urgently needed to engineer pest resistance in plants. A recent study by Mo et al. indicates that iJAZ maybe the next breakthrough for engineering pest resistance in plants.

2.
J Environ Manage ; 368: 121898, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39121622

RESUMO

Amidst pressing global environmental challenges, exacerbated by climate change and the imminent threat of global warming, there is a critical need to assess the efficacy of environmental policies. This study centers its attention on the pivotal role of these policies in addressing environmental concerns. Specifically, our research aims to scrutinize the impact of stringent environmental policies on environmental quality under the theoretical underpinnings of environmental Kuznets curve. To achieve this objective, the study collected data from BRICS-T economies over the period of 1990-2020. This study employed the method of moments quantile regression technique for empirical analysis. Our study validates the presence of the Environmental Kuznets curve (EKC hypothesis). Empirical findings reveal the sustained significance of environmental stringency across all quantiles, demonstrating a positive correlation in lower quantiles and a negative correlation in higher quantiles. At lower quantiles, the impact is insignificant initially, but pronounced due to efficiency improvements induced by stringent policies. The effects became negative at middle quantiles, indicating stringent policies might encounter diminishing returns where policy measures start stabilizing ecological impacts. At higher quantiles, the influence of ESI remains significant, reflecting ongoing adaptations in larger economies with higher ecological footprints. This suggests the potential effectiveness of stringent regulatory measures in mitigating environmental impacts and reducing ecological footprints. The identified inverted U-shaped curve signifies that while stringent policies may not inherently enhance environmental health, beyond a certain threshold, they can indeed contribute to its improvement. Our policy recommendation advocates for the widespread adoption and promotion of such stringent measures to safeguard environmental health.

3.
Soft Matter ; 20(27): 5425-5434, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946525

RESUMO

Biocatalytic membranes combine the separation properties of membranes and the catalytic abilities of enzymes, holding great promise for industries where both purification and conversion are required. In this work, polyelectrolyte complex membranes incorporated with lysozyme were prepared using polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) through a one-step and mild pH shift aqueous phase separation (APS) approach. The effects of lysozyme addition and casting solution pH on the membrane properties were studied. All the membranes, both with and without added lysozyme, exhibited asymmetric structures with relatively dense top surfaces and porous cross-sections with finger-like macrovoids. The incorporation of lysozyme did not significantly influence the structure and permeability of the formed membranes. The PEI-PSS biocatalytic membranes exhibited temperature dependent enzymatic activity. The activity strongly increased with increased operational temperature, with the highest activity of 4.30 ± 0.15 U cm-2 at 45 °C. This indicates a responsive effect, where a higher temperature leads to some swelling of the polyelectrolyte complex membrane, making the enzyme more accessible to the used substrate. Moreover, the biocatalytic membranes demonstrate desirable enzymatic stability, maintaining 60% activity even after 60 days of storage. This study validates the potential of the water-based APS process as a straightforward approach for integrating enzymes into responsive biocatalytic membranes.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124718, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950481

RESUMO

A new transfer approach was proposed to share calibration models of the hexamethylenetetramine-acetic acid solution for studying hexamethylenetetramine concentration values across different near-infrared (NIR) spectrometers. This approach combines Savitzky-Golay first derivative (S_G_1) and orthogonal signal correction (OSC) preprocessing, along with feature variable optimization using an adaptive chaotic dung beetle optimization (ACDBO) algorithm. The ACDBO algorithm employs tent chaotic mapping and a nonlinear decreasing strategy, enhancing the balance between global and local search capabilities and increasing population diversity to address limitations observed in traditional dung beetle optimization (DBO). Validated using the CEC-2017 benchmark functions, the ACDBO algorithm demonstrated superior convergence speed, accuracy, and stability. In the context of a partial least squares (PLS) regression model for transferring hexamethylenetetramine-acetic acid solutions using NIR spectroscopy, the ACDBO algorithm excelled over alternative methods such as uninformative variable elimination, competitive adaptive reweighted sampling, cuckoo search, grey wolf optimizer, differential evolution, and DBO in efficiency, accuracy of feature variable selection, and enhancement of model predictive performance. The algorithm attained outstanding metrics, including a determination coefficient for the calibration set (Rc2) of 0.99999, a root mean square error for the calibration set (RMSEC) of 0.00195%, a determination coefficient for the validation set (Rv2) of 0.99643, a root mean squared error for the validation set (RMSEV) of 0.03818%, residual predictive deviation (RPD) of 16.72574. Compared to existing OSC, slope and bias correction (S/B), direct standardization (DS), and piecewise direct standardization (PDS) model transfer methods, the novel strategy enhances the accuracy and robustness of model predictions. It eliminates irrelevant background information about the hexamethylenetetramine concentration, thereby minimizing the spectral discrepancies across different instruments. As a result, this approach yields a determination coefficient for the prediction set (Rp2) of 0.96228, a root mean squared error for the prediction set (RMSEP) of 0.12462%, and a relative error rate (RER) of 17.62331, respectively. These figures closely follow those obtained using DS and PDS, which recorded Rp2, RMSEP, and RER values of 0.97505, 0.10135%, 21.67030, and 0.98311, 0.08339%, 26.33552, respectively. Unlike conventional methods such as OSC, S/B, DS, and PDS, this novel approach does not require the analysis of identical samples across different instruments. This characteristic significantly broadens its applicability for model transfer, which is particularly beneficial for transferring specific measurement samples.

5.
Mikrochim Acta ; 191(8): 478, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039252

RESUMO

Fe-MOFs of mixed valence was synthesized by a solvothermal method via the in-situ reduction of ethylene glycol (EG) pre-coordination with the proper ratio of Fe2+/Fe3+ between 0.83 and 2.46. Synchronously with copper introduction, the Fe/Cu MOFs of mixed valence (Fe/Cu-MVMOFs) was then one pot acquired to remarkably improve the affinity of Fe2+ and Cu+ to H2O2 and promote the conversion efficiency of Fe2+/Fe3+ via the electron transfer among Fe-Cu bimetal clusters (XPS and XRD). Hence, the maximum reaction rate of H2O2 with Fe/Cu-MVMOFs reached 16.65 M·s-1, along with Km as low as 0.0479 mM. H2O2 and glutathione (GSH) were efficiently detected, ranging from 0.25 to 60 µM and from 0.2 to 40 µM, respectively. The investigation of catalyzation selectivity and practical serum detection by Fe/Cu-MVMOFs illustrated the efficacy and efficiency, denoting Fe/Cu-MVMOFs as the promising peroxidase candidate.

6.
ACS Appl Mater Interfaces ; 16(24): 31666-31676, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833630

RESUMO

ß-Ga2O3 is an ultrawide-band gap semiconductor with excellent potential for high-power and ultraviolet optoelectronic device applications. Low thermal conductivity is one of the major obstacles to enable the full performance of ß-Ga2O3-based devices. A promising solution for this problem is to integrate ß-Ga2O3 with a diamond heat sink. However, the thermal properties of the ß-Ga2O3/diamond heterostructures after the interfacial bonding have not been studied extensively, which are influenced by the crystal orientations and interfacial atoms for the ß-Ga2O3 and diamond interfaces. In this work, molecular dynamics simulations based on machine learning potential have been adopted to investigate the crystal-orientation-dependent and interfacial-atom-dependent thermal boundary resistance (TBR) of the ß-Ga2O3/diamond heterostructure after interfacial bonding. The differences in TBR at different interfaces are explained in detail through the explorations of thermal conductivity value, thermal conductivity spectra, vibration density of states, and interfacial structures. Based on the above explorations, a further understanding of the influence of different crystal orientations and interfacial atoms on the ß-Ga2O3/diamond heterostructure was achieved. Finally, insightful optimization strategies have been proposed in the study, which could pave the way for better thermal design and management of ß-Ga2O3/diamond heterostructures according to guidance in the selection of the crystal orientations and interfacial atoms of the ß-Ga2O3 and diamond interfaces.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38780778

RESUMO

PURPOSE: Suicide and non-suicidal self-injury (NSSI) are preventable concerns in young people. Suicidal ideation (SI), suicidal plans (SP) and suicidal attempt (SA) are closely related to death. Sleep problems are known risk factors for suicide and NSSI. This study aimed to explore the relationship between sleep, suicidality and NSSI. METHODS: Participants were 3,828 middle school and college students aged 11-23 years from urban and rural areas of Henan Province. Sleep, suicidal phenomena and NSSI were assessed by applying self-reported questionnaires. Chi-squared tests were utilized to demonstrate the demographic data and sleep variables. The correlation between sleep, suicidality and NSSI were explored by using binary logistic regression, while adjusting socio-demographic characteristics with multivariate models. RESULTS: Sleep variables except mid-sleep time were related to suicidal phenomena (P < 0.05). Greater social jet lag (SJL) [≥ 2 h (h)] was associated with increased risk of SI [Odds ratios (OR) = 1.72, 95% confidence intervals (CI):1.40-2.11], SP (OR = 2.10, 95%CI:1.59-2.79) and SA (OR = 1.50, 95%CI:1.00-2.26). Non-only child participants with SJL (≥ 2 h) had significantly increased odds of SI (OR = 1.75, 95%CI: 1.41-2.18) and SP (OR = 2.25, 95%CI: 1.66-3.05). Eveningness chronotype had the strongest correlation with SI (OR = 3.87, 95%CI:2.78-5.38), SP (OR = 4.72, 95%CI:2.97-7.50), SA (OR = 6.69, 95%CI:3.08-14.52) and NSSI (OR = 1.39, 95%CI:1.02-1.90). CONCLUSION: Overlong or short sleep duration, SJL, eveningness chronotype and other sleep abnormalities (e.g., daytime dysfunction, low sleep efficiency) were associated with a higher prevalence of SI, SP and SA. Additionally, eveningness was significantly correlated with NSSI among young people. These findings suggested the importance of assessing and intervening in sleep habits to prevent suicide and NSSI in young people.

8.
ACS Appl Mater Interfaces ; 16(21): 27998-28007, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759105

RESUMO

AlN/diamond heterostructures hold tremendous promise for the development of next-generation high-power electronic devices due to their ultrawide band gaps and other exceptional properties. However, the poor adhesion at the AlN/diamond interface is a significant challenge that will lead to film delamination and device performance degradation. In this study, the uniaxial tensile failure of the AlN/diamond heterogeneous interfaces was investigated by molecular dynamics simulations based on a neuroevolutionary machine learning potential (NEP) model. The interatomic interactions can be successfully described by trained NEP, the reliability of which has been demonstrated by the prediction of the cleavage planes of AlN and diamond. It can be revealed that the annealing treatment can reduce the total potential energy by enhancing the binding of the C and N atoms at interfaces. The strain engineering of AlN also has an important impact on the mechanical properties of the interface. Furthermore, the influence of the surface roughness and interfacial nanostructures on the AlN/diamond heterostructures has been considered. It can be indicated that the combination of surface roughness reduction, AlN strain engineering, and annealing treatment can effectively result in superior and more stable interfacial mechanical properties, which can provide a promising solution to the optimization of mechanical properties, of ultrawide band gap semiconductor heterostructures.

9.
Organogenesis ; 20(1): 2356339, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38796830

RESUMO

This study is to investigate the therapeutical effect and mechanisms of human-derived adipose mesenchymal stem cells (ADSC) in relieving adriamycin (ADR)-induced nephropathy (AN). SD rats were separated into normal group, ADR group, ADR+Losartan group (20 mg/kg), and ADR + ADSC group. AN rats were induced by intravenous injection with adriamycin (8 mg/kg), and 4 d later, ADSC (2 × 105 cells/mouse) were administrated twice with 2 weeks interval time (i.v.). The rats were euthanized after the 6 weeks' treatment. Biochemical indicators reflecting renal injury, such as blood urea nitrogen (BUN), neutrophil gelatinase alpha (NGAL), serum creatinine (Scr), inflammation, oxidative stress, and pro-fibrosis molecules, were evaluated. Results demonstrated that we obtained high qualified ADSCs for treatment determined by flow cytometry, and ADSCs treatment significantly ameliorated renal injuries in DN rats by decreasing BUN, Scr and NGAL in peripheral blood, as well as renal histopathological injuries, especially protecting the integrity of podocytes by immunofluorescence. Furthermore, ADSCs treatment also remarkably reduced the renal inflammation, oxidative stress, and fibrosis in DN rats. Preliminary mechanism study suggested that the ADSCs treatment significantly increased renal neovascularization via enhancing proangiogenic VEGF production. Pharmacodynamics study using in vivo imaging confirmed that ADSCs via intravenous injection could accumulate into the kidneys and be alive at least 2 weeks. In a conclusion, ADSC can significantly alleviate ADR-induced nephropathy, and mainly through reducing oxidative stress, inflammation and fibrosis, as well as enhancing VEGF production.


Assuntos
Tecido Adiposo , Doxorrubicina , Nefropatias , Ratos Sprague-Dawley , Animais , Humanos , Tecido Adiposo/citologia , Masculino , Nefropatias/induzido quimicamente , Nefropatias/terapia , Ratos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Transplante de Células-Tronco Mesenquimais , Estresse Oxidativo/efeitos dos fármacos , Rim/patologia , Fibrose , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Estromais , Angiogênese
10.
Cancer Biol Ther ; 25(1): 2349429, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738555

RESUMO

Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.


Assuntos
Ferroptose , Metiltransferases , Estabilidade de RNA , Sorafenibe , Neoplasias do Colo do Útero , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Camundongos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Estabilidade de RNA/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Prognóstico , Ferritinas , Oxirredutases
11.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474210

RESUMO

Malus sieversii is considered the ancestor of the modern cultivated apple, with a high value for apple tolerance breeding. Despite studies on the temperature adaptability of M. sieversii carried out at a physiological response and the genome level, information on the proteome changes of M. sieversii during dormancy is limited, especially about the M. sieversii subtypes. In this study, a DIA-based approach was employed to screen and identify differential proteins involved in three overwintering periods of flower buds in two M. sieversii subtypes (Malus sieversii f. luteolus, GL; Malus sieversii f. aromaticus, HC) with different overwintering adaptabilities. The proteomic analysis revealed that the number of the down-regulated differential expression proteins (DEPs) was obviously higher than that of the up-regulated DEPs in the HC vs. GL groups, especially at the dormancy stage and dormancy-release stage. Through functional classification of those DEPs, the majority of the DEPs in the HC vs. GL groups were associated with protein processing in the endoplasmic reticulum, oxidative phosphorylation, starch and sucrose metabolism and ribosomes. Through WGCNA analysis, tricarboxylic acid cycle and pyruvate metabolism were highly correlated with the overwintering stages; oxidative phosphorylation and starch and sucrose metabolism were highly correlated with the Malus sieversii subtypes. This result suggests that the down-regulation of DEPs, which are predominantly enriched in these pathways, could potentially contribute to the lower cold tolerance observed in HC during overwintering stage.


Assuntos
Malus , Malus/genética , Proteômica , Melhoramento Vegetal , Flores/genética , Sacarose/metabolismo , Amido/metabolismo
12.
Physiol Plant ; 176(1): e14207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38383826

RESUMO

Root phenes are associated with the absorptive efficiency of water and fertilizers. However, there are few reports on the genetic variation and stability of peanut (Arachis hypogaea L.) root architecture under different environments. In this study, the diversity, variance and stability of root phenes of 89 peanut varieties were investigated with shovelomics (high throughput phenotyping of root system architecture) for two years in both field and laboratory experiments. The root phenes of these peanut genotypes presented rich diversity; for example, the value of total root length (TRL) ranged from 347.84 cm to 1013.80 cm in the field in 2018, and from 55.14 cm to 206.22 cm in the laboratory tests. The root phenes of different genotypes varied differently; for example, the coefficient of variation (CV) of TRL ranged from 24.0 to 83.5 across the two-year field test. Field and laboratory evaluations were highly correlated, especially on lateral root density (LRD) and root angle (RA), and the quadrant graph analysis of LRD and RA implied that 69.7% of the roots belong to the same type. These not only further reflect root phenes stability through different environment but also demonstrate that some root phenes identified at early stage can indicate their status at later growth stage. In addition, root phenes showed a strong correlation with shoot growth, especially root dry weight (RDW), TRL and(nodule number)NN. Thus, laboratory tests in combination with field shovelomics can efficiently screen and select genotypes with contrasting root phenes to optimize water and nutrient management.


Assuntos
Arachis , Fabaceae , Arachis/genética , Raízes de Plantas/genética , Genótipo , Água
13.
Animals (Basel) ; 14(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254404

RESUMO

Porcine circovirus type 3 (PCV3) is endemic in swine worldwide and causes reproductive disorders, dermatitis and nephrotic syndrome, and multi-organ inflammation. Currently, there is a growing need for rapid and accurate diagnostic methods in disease monitoring. In this study, four monoclonal antibodies (mAbs) against PCV3 capsid proteins were prepared (mAbs 2F6, 2G8, 6E2, and 7E3). MAb 7E3, which had the highest binding affinity for the Cap protein, was chosen for further investigation. A novel B cell epitope 110DLDGAW115 was identified using mAb 7E3. An epitope-blocking (EB) enzyme-linked immunosorbent assay (ELISA) was successfully developed using horseradish-peroxidase-labeled mAb 7E3 to detect PCV3 antibodies in porcine sera. Moreover, the EB-ELISA showed no specific reaction with other porcine disease sera, and the cut-off value was defined as 35%. Compared with the commercial ELISA, the percentage agreement was 95.59%. Overall, we have developed a novel EB-ELISA method that accurately and conveniently detects PCV3 in serum, making it a valuable tool for the clinical detection of PCV3 infection.

14.
Int Wound J ; 21(4): e14535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169097

RESUMO

A meta-analysis study was executed to measure the effect of minimally invasive surgery (MIS) and open surgical management (OSM) on wound infection (WI) in female's cervical cancer (CC). A comprehensive literature study till February 2023 was applied and 1675 interrelated investigations were reviewed. The 41 chosen investigations enclosed 10 204 females with CC and were in the chosen investigations' starting point, 4294 of them were utilizing MIS, and 5910 were utilizing OSM. Odds ratio (OR) in addition to 95% confidence intervals (CIs) were utilized to compute the value of the effect of MIS and OSM on WI in female's CC and by the dichotomous approaches and a fixed or random model. The MIS had significantly lower WI (OR, 0.23; 95% CI, 0.15-0.35, p < 0.001) with no heterogeneity (I2 = 0%) and postoperative aggregate complications (PACs) (OR, 0.49; 95% CI, 0.37-0.64, p < 0.001) in females with CC and compared OSM. However, MIS compared with OSM in females with CC and had no significant difference in pelvic infection and abscess (PIA) (OR, 0.59; 95% CI, 0.31-1.16, p = 0.13). The MIS had significantly lower WI, and PACs, though, had no significant difference in PIA in females with CC and compared with OSM. However, care must be exercised when dealing with its values because of the low sample size of some of the nominated investigations for the meta-analysis.


Assuntos
Neoplasias do Colo do Útero , Infecção dos Ferimentos , Humanos , Feminino , Neoplasias do Colo do Útero/cirurgia , Estudos Retrospectivos , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Complicações Pós-Operatórias , Infecção da Ferida Cirúrgica/etiologia
15.
ACS Appl Mater Interfaces ; 16(1): 1837-1845, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38114422

RESUMO

Ionic polymer sensors (IPSs) have broad application prospects in health monitoring, environmental perception, and human-computer interaction. The performance of IPSs with chemically prepared electrodes is generally superior to that with physically prepared electrodes due to the area difference of the electric double layer (EDL), but the effects of the electrode characteristics prepared by chemical methods on the performance of IPSs have not been revealed. Therefore, in this paper, we studied the impact of the characteristics of chemically prepared electrodes on the performance of IPSs and realized the performance optimization of IPSs through electrode characteristic regulation. By controlling the matrix surface roughening, immersion reduction plating (IRP) cycles, and electroplating (EP) time, the sensing performances of IPS samples with different electrode interface roughnesses, electrode penetration depths, and surface resistances were investigated, respectively. The experimental results indicated that the response voltage of the IPS can be improved by increasing the electrode interface roughness and the electrode penetration depth and reducing the surface resistance. In addition, we have proven that the sensing performance of the IPS is determined by its intrinsic capacitance characteristics. Through coupling electrode characteristic regulations such as roughening and increasing IRP cycles and EP time, a high-performance IPS was obtained, and its response amplitude was improved by 237.8%. The obtained high-performance sensor has been applied in human motion detection, which has good potential to develop wearable devices with high stability for physiological activity monitoring.

16.
Sci Rep ; 13(1): 21191, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040954

RESUMO

To evaluate the possible thermal risks associated with the storage of octogen (HMX), non-isothermal differential scanning calorimetry (DSC) experiments were conducted in order to ascertain the kinetic model and parameters governing its thermal decomposition. DSC measurements indicate that HMX underwent a crystal transformation prior to thermal decomposition. A kinetic model for the autocatalytic thermal decomposition process was developed through the analysis of its primary exothermic peaks. Subsequently, numerical simulations were performed using the aforementioned kinetic model to assess the potential thermal explosion hazard of HMX under two distinct storage conditions. The comparison was made between the models of HMX autocatalytic decomposition temperature and thermal explosion critical temperature under two distinct storage conditions. The prediction of the influence of ambient temperature on the critical temperature of thermal explosion is conducted simultaneously. Finally, the thermal hazard parameters of HMX under different package quality are given.

17.
Nanomaterials (Basel) ; 13(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887932

RESUMO

The adsorption properties of Cu, Ag, Zn, and Cd-modified SnP3 monolayers for H2S have been studied using density functional theory (DFT). Based on phonon spectrum calculations, a structurally stable intrinsic SnP3 monolayer was obtained, based on which four metal-modified SnP3 monolayers were constructed, and the band gaps of the modified SnP3 monolayers were significantly reduced. The adsorption capacity of Cu, Zn-modified SnP3 was better than that of Ag, Cd-modified SnP3. The adsorption energies of Cu-modified SnP3 and Zn-modified SnP3 for H2S were -0.749 eV and -0.639 eV, respectively. In addition, Cu-modified SnP3 exhibited chemisorption for H2S, while Zn-modified SnP3 exhibited strong physisorption, indicating that it can be used as a sensor substrate. Co-adsorption studies showed that ambient gases such as N2, O2, and H2O had little effect on H2S. The band gap change rate of Zn-modified SnP3 after adsorption of H2S was as high as -28.52%. Recovery time studies based on Zn-modified SnP3 showed that the desorption time of H2S was 0.064 s at 298 K. Therefore, Zn-modified SnP3 can be used as a promising sensor substrate for H2S due to its good selectivity, sensitivity, and fast recovery time.

18.
Nutrients ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836414

RESUMO

This study aimed to investigate the association between sleep behaviors and body composition, which was measured by bioelectrical impedance analysis (BIA) among Chinese adolescents. Overall, 444 students (65.3% females, 19.12 ± 1.177 years) completed questionnaires describing sleep characteristics. Sleep characteristics were derived from subjective means. Body composition was obtained from BIA by InBody 720 (Biospace Co. Ltd., Seoul, Republic of Korea). Regression models tested relationships between sleep and body composition after adjustment for covariates. Students with weekday nap duration (>30 min/d) exerted higher waist-height ratio (WHtR) (B = 0.013, FDR-corrected p = 0.080). Average sleep duration (≤7 h/d) was linked to more WHtR (B = 0.016, FDR-corrected p = 0.080). People with high social jetlag showed gained visceral fat area (B = 7.475), WHtR (B = 0.015), waist to hip ratio (B = 0.012), fat mass index (B = 0.663) and body fat percentage (B = 1.703) (all FDR-corrected p < 0.1). Individuals with screen time before sleep (>0.5 h) exhibited higher visceral fat area (B = 7.934, FDR-corrected p = 0.064), WHtR (B = 0.017, FDR-corrected p = 0.080), waist to hip ratio (B = 0.016, FDR-corrected p = 0.090), fat mass index (B = 0.902, FDR-corrected p = 0.069) and body fat percentage (B = 2.892, FDR-corrected p = 0.018). We found poor sleep characteristics were closely related to general and abdominal obesity.


Assuntos
População do Leste Asiático , Obesidade Abdominal , Adolescente , Feminino , Humanos , Masculino , Composição Corporal , Índice de Massa Corporal , Obesidade , Obesidade Abdominal/epidemiologia , Sono , Circunferência da Cintura , Adulto Jovem
19.
Plants (Basel) ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896001

RESUMO

Cadmium (Cd) is one of the most toxic and widely distributed heavy metal pollutants, posing a huge threat to crop production, food security, and human health. Corn is an important food source and feed crop. Corn growth is subject to Cd stress; thus, reducing cadmium stress, absorption, and transportation is of great significance for achieving high yields, a high efficiency, and sustainable and safe corn production. The use of silicon or melatonin alone can reduce cadmium accumulation and toxicity in plants, but it is unclear whether the combination of silicon and melatonin can further reduce the damage caused by cadmium. Therefore, pot experiments were conducted to study the effects of melatonin and silicon on maize growth and cadmium accumulation. The results showed that cadmium stress significantly inhibited the growth of maize, disrupted its physiological processes, and led to cadmium accumulation in plants. Compared to the single treatment of silicon or melatonin, the combined application of melatonin and silicon significantly alleviated the inhibition of the growth of maize seedlings caused by cadmium stress. This was demonstrated by the increased plant heights, stem diameters, and characteristic root parameters and the bioaccumulation in maize seedlings. Under cadmium stress, the combined application of silicon and melatonin increased the plant height and stem diameter by 17.03% and 59.33%, respectively, and increased the total leaf area by 43.98%. The promotion of corn growth is related to the reduced oxidative damage under cadmium stress, manifested in decreases in the malondialdehyde content and relative conductivity and increases in antioxidant enzyme superoxide dismutase and guaiacol peroxidase activities, as well as in soluble protein and chlorophyll contents. In addition, cadmium accumulation in different parts of maize seedlings and the health risk index of cadmium were significantly reduced, reaching 48.44% (leaves), 19.15% (roots), and 20.86% (health risk index), respectively. Therefore, melatonin and silicon have a significant synergistic effect in inhibiting cadmium absorption and reducing the adverse effects of cadmium toxicity.

20.
Chem Commun (Camb) ; 59(77): 11500-11503, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37622211

RESUMO

A rational molecular design strategy is introduced for selective metal-ligand coordination, enabling the quantitative self-assembly of heterobimetallic nano-Saturn complexes. During the sequential multicomponent self-assembly, the CdII ions and organometallic trans-PtII motifs demonstrate preferential binding to specific ligands. The pre-designed directive interactions allow for precise control over the structural characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA