RESUMO
It is widely known that antibiotics can affect the structure and function of soil microbial communities, but the specific degree of impact and controlled factors on different indicators remain inconclusive. We conducted a multiple hierarchical mixed effects meta-analysis on 2564 observations that were extracted from 60 publications, to comprehensively assess the impact of antibiotics on soil microbiota. The results showed that antibiotics had significant negative effects on soil microbial biomass, α-diversity and soil enzyme activity. Under neutral initial soil, when soil was derived from agricultural land or had a fine-textured, the negative impacts of antibiotics on soil microbial community were exacerbated. Both single and mixed additions of antibiotics had significant inhibitory effects on soil microbial enzyme activities. The Random Forest model predicted the following key moderators involved in the effects of antibiotics on the soil microbiome, and antibiotics type, soil texture were key moderators on the severity of soil microbial biomass changes. Soil texture, temperature and single or combined application constitute of antibiotics were the main drivers of effects on soil enzyme activities. The reported results can be helpful to assess the ecological risk of antibiotics in a soil environment and provides a scientific basis for the rational of antibiotics use in the soil environment.
Assuntos
Antibacterianos , Microbiota , Microbiologia do Solo , Solo , Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Solo/química , Poluentes do Solo/toxicidade , BiomassaRESUMO
Microplastics (MPs) pollution is recognized as a global emerging threat with serious potential impacts on ecosystems. Our meta-analysis was conducted based on 117 carefully selected publications, from which 2160 datasets were extracted. These publications described experiments in which MPs were added to soil (in laboratory or greenhouse experiments or in the field) after which the soil microbial community was analyzed and compared to a control group. From these publications, we extracted 1315 observations on soil bacterial alpha diversity and richness indices and 845 datasets on gene abundance of bacterial genes related to the soil nitrogen cycle. These data were analyzed using a multiple hierarchical mixed effects meta-analysis. The mean effect of microplastic exposure was a significant decrease of soil bacterial community diversity and richness. We explored these responses for different regulators, namely MPs addition rates, particle size and plastic type, soil texture and land use, and study type. Of the bacterial processes involved in the soil nitrogen cycle, MPs addition significantly promoted assimilation of ammonium, nitrogen fixation and urea decomposition, but significantly inhibited nitrification. These results suggest that MPs contamination may have considerable impacts on soil bacterial community structure and function as well as on the soil nitrogen cycle.
RESUMO
Soil stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) are indicators for nutrient balance. Shrub encroachment into grasslands could change nutrient concentrations and stoichiometry in soils, but the general patterns remain unclear. With a meta-analysis of a global dataset covering 344 observations from 68 studies, we examined the responses of grassland soil C:N:P stoichiometry to shrub encroachment under various environmental conditions. Our results show that: 1) Shrub encroachment significantly increased the concentrations of soil C (+29 %), N (+25 %), P (+20 %), C:N (+5 %), C:P (+12 %), and N:P (+6 %). The magnitude of such effects varied with climate, soil texture, and soil layer. 2) Increases in SOC and TN concentrations mainly occurred in Mediterranean and very humid climate zones. Soil C:P and N:P decreased in semi-humid climate zone after shrub encroachment. 3) The increases in SOC and TN concentrations and in the C:N, C:P, and N:P ratios after shrub encroachment were greater in the topsoil than in deeper soil layers. 4) Both finest-textured soil (clay) and coarsest-textured soil (sand) are beneficial for increase of soil nutrient concentrations following shrub encroachment. 5) The magnitude of the change in soil C:N was negatively correlated with the duration of shrub encroachment, due to greater increases in soil TN than in SOC concentrations with longer durations of encroachment. Our results indicate that soil stoichiometric shifts in shrub-encroached grasslands are relatively sensitive to environmental factors, including soil texture, soil pH, and climate. These findings help us to better understand the effects of shrub encroachment on biogeochemical cycling, functioning, and services in grasslands across a broad range of spatio-temporal scales.
Assuntos
Carbono , Pradaria , Nitrogênio , Fósforo , Solo , Fósforo/análise , Solo/química , Nitrogênio/análise , Carbono/análise , Monitoramento AmbientalRESUMO
Forest management changes the physical environments and nutrient dynamics and then regulates the forest productivity. Soil phosphorus (P) availability is critical for productivity in tropical and subtropical forests. However, it was still poorly understood how soil P content and fraction respond to various forest management practices in these regions. Here, we measured the soil total P, available P, and Hedley's P fractions, including inorganic and organic P (Pi and Po), in subtropical pine plantations treated with understory removal (UR), non-dominant species thinning (NDST) and dominant species thinning (DST) after nine years. Compared to plantations without management (CK), treatments such as UR, NDST, and DST decreased soil total P at 0-10 cm and soil available P at 0-10 cm and 10-20 cm. Increases in resin-Pi, NaOH-Pi, and C.HCl-Pi resulted in a higher total Pi in 0-10 cm (p < 0.05) in treated plots (UR, NDST, and DST) than in CK plots. UR, NDST, and DST treatments increased NaHCO3-Po and NaOH-Po (p < 0.05) but decreased C.HCl-Po at a depth of 0-10 cm. Regardless of management treatments, soil total P, available P, and P fractions in 0-10 cm showed higher contents than those in 10-20 cm. There were positive relationships between total P and total Po (p < 0.01) and between available P and total Pi. There were also positive relationships between total P, available P, NaHCO3-Pi, and NaOH-Pi (p < 0.05). In conclusion, forest management such as UR, NDST, and DST decreased soil total P and available P, and transforming soil P fractions to available P will meet the P demand following management in the pine plantations of subtropical China.
RESUMO
The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.
Assuntos
Betula , Larix , Pergelissolo , Água , Larix/crescimento & desenvolvimento , Larix/fisiologia , Betula/crescimento & desenvolvimento , Betula/fisiologia , Água/metabolismo , China , Mudança Climática , Taiga , Aquecimento GlobalRESUMO
In recent years, the Sanjiang Plain has experienced drastic human activities, which have dramatically changed its ecological environment. Soil microorganisms can sensitively respond to changes in soil quality as well as ecosystem function. In this study, we investigated the changes in soil microbial community diversity and composition of three typical land use types (forest, wetland and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and 114 different PLFA compounds were identified. The results showed that the soil physicochemical properties changed significantly (p < 0.05) among the different land use types; the microbial diversity and abundance in cropland soil were lower than those of the other two land use types. Soil pH, soil water content, total organic carbon and available nitrogen were the main soil physico-chemical properties driving the composition of the soil microbial community. Our results indicate that the soil microbial community response to the three different habitats is complex, and provide ideas for the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial communities, as well as a theoretical basis for the future management and sustainable use of the Sanjiang plain, in the northeast of China.
RESUMO
Both macronutrients and micronutrients are essential for tree growth and development through participating in various ecophysiological processes. However, the impact of the nutritional status of trees on their ability to withstand drought-induced mortality remains inconclusive. We thus conducted a comprehensive meta-analysis, compiling data on 11 essential nutrients from 44 publications (493 independent observations). Additionally, a field study was conducted on Pinus sylvestris L. trees with varying drought-induced vitality loss in the "Visp" forest in southern Switzerland. No consistent decline in tree nutritional status was observed during tree mortality. The meta-analysis revealed significantly lower leaf potassium (K), iron (Fe), and copper (Cu) concentrations with tree mortality. However, the field study showed no causal relationships between nutritional levels and the vitality status of trees. This discrepancy is mainly attributed to the intrinsic differences in the two types of experimental designs and the ontogenetic stages of target trees. Nutrient reductions preceding tree mortality were predominantly observed in non-field conditions, where the study was conducted on seedlings and saplings with underdeveloped root systems. It limits the nutrient uptake capacity of these young trees during drought. Furthermore, tree nutritional responses are also influenced by many variables. Specifically, (a) leaf nutrients are more susceptible to drought stress than other organs; (b) reduced tree nutrient concentrations are more prevalent in evergreen species during drought-induced mortality; (c) of all biomes, Mediterranean forests are most vulnerable to drought-induced nutrient deficiencies; (d) soil types affect the direction and extent of tree nutritional responses. We identified factors that influence the relationship between tree nutritional status and drought survival, and proposed potential early-warning indicators of impending tree mortality, for example, decreased K concentrations with declining vitality. These findings contribute to our understanding of tree responses to drought and provide practical implications for forest management strategies in the context of global change.
Assuntos
Pinus sylvestris , Árvores , Secas , Florestas , EcossistemaRESUMO
Soil fungi are a key component of terrestrial ecosystems and play a major role in soil biogeochemical cycling. Although the diversity and composition of fungal communities are regulated by many abiotic and biotic factors, the effect of elevation on soil fungal community diversity and composition remains largely unknown. In this study, the soil fungal composition and diversity in Deyeuxia angustifolia populations along an elevational gradient (1,690 m to 2020 m a.s.l.) were assessed, using Illumina MiSeq sequencing, on the north-facing slope of the Changbai Mountain, northeastern China. Our results showed that soil physicochemical parameters changed significantly along with the elevational gradients. The Ascomycota and Basidiomycota were the most dominant phyla along with the gradient. Alpha diversity of soil fungi decreased significantly with elevation. Soil nitrate nitrogen (NO3--N) was positively correlated with fungal richness and phylogenetic diversity (PD), indicating that soil nitrate nitrogen (NO3--N) is a key soil property determining fungal community diversity. In addition to soil nitrate content, soil pH and soil moisture were the most important environmental properties determining the soil fungal diversity. Our results suggest that the elevational changes in soil physicochemical properties play a key role in shaping the community composition and diversity of soil fungi. This study will allow us to better understand the biodiversity distribution patterns of soil microorganisms in mountain ecosystems.
RESUMO
Introduction: Parasitic plants can damage crop plants and consequently cause yield losses and thus threaten food security. Resource availability (e.g., phosphorus, water) has an important role in the response of crop plants to biotic attacks. However, how the growth of crop plants under parasitism are affected by environmental resource fluctuation is poorly understood. Methods: We conducted a pot experiment to test the effects of the intensity of Cuscuta australis parasitism and the availability of water and phosphorus (P) on soybean shoot and root biomass. Results and discussion: We found that low-intensity parasitism caused ~6% biomass reduction, while high-intensity parasitism caused ~26% biomass reduction in soybean. Under 5-15% water holding capacity (WHC), the deleterious effect of parasitism on soybean hosts was ~60% and ~115% higher than that under 45-55% WHC and 85-95% WHC, respectively. When the P supply was 0 µM, the deleterious effect of parasitism on soybean was 67% lower than that when the P supply was 20 µM. Besides, the biomass of C. australis was highest when both the water and the P availability were lowest. Cuscuta australis caused the highest damage to soybean hosts under 5 µM P supply, 5-15% WHC, and high-intensity parasitism. Additionally, C. australis biomass was significantly and negatively related to the deleterious effect of parasitism on soybean hosts and to the total biomass of soybean hosts under high-intensity parasitism, but not under low-intensity parasitism. Although high resource availability can promote soybean growth, the two resources have different impacts on the response of hosts to parasitism. Higher P availability decreased host tolerance to parasites, while higher water availability increased host tolerance. These results indicate that crop management, specifically water and phosphorus supply, can efficiently control C. australis in soybean. To our best knowledge, this appears to be the first study to test the interactive effect of different resources on the growth and response of host plants under parasitism.
RESUMO
Many carbon-related physiological questions in plants such as carbon (C) limitation or starvation have not yet been resolved thoroughly due to the lack of suitable experimental methodology. As a first step towards resolving these problems, we conducted infusion experiments with bonsai trees (Ficus microcarpa) and young maple trees (Acer pseudoplatanus) in greenhouse, and with adult Scots pine trees (Pinus sylvestris) in the field, that were "fed" with 13C-labelled glucose either through the phloem or the xylem. We then traced the 13C-signal in plant organic matter and respiration to test whether trees can take up and metabolize exogenous sugars infused. Ten weeks after infusion started, xylem but not phloem infusion significantly increased the δ13C values in both aboveground and belowground tissues of the bonsai trees in the greenhouse, whereas xylem infusion significantly increased xylem δ13C values and phloem infusion significantly increased phloem δ13C values of the adult pines in the field experiment, compared to the corresponding controls. The respiration measurement experiment with young maple trees showed significantly increased δ13C-values in shoot respired CO2 at the time of four weeks after xylem infusion started. Our results clearly indicate that trees do translocate and metabolize exogenous sugars infused, and because the phloem layer is too thin, and thus xylem infusion can be better operated than phloem infusion. This tree infusion method developed here opens up new avenues and has great potential to be used for research on the whole plant C balance and its regulation in response to environmental factors and extreme stress conditions.
RESUMO
Nitrogen enrichment and land use are known to influence various ecosystems, but how these anthropogenic changes influence community and ecosystem responses to disturbance remains poorly understood. Here we investigated the effects of increased nitrogen input and mowing on the resistance and recovery of temperate semiarid grassland experiencing a three-year drought. Nitrogen addition increased grassland biomass recovery but decreased structural recovery after drought, whereas annual mowing increased grassland biomass recovery and structural recovery but reduced structural resistance to drought. The treatment effects on community biomass/structural resistance and recovery were largely modulated by the stability of the dominant species and asynchronous dynamics among species, and the community biomass resistance and recovery were also greatly driven by the stability of grasses. Community biomass resistance/recovery in response to drought was positively associated with its corresponding structural stability. Our study provides important experimental evidence that both nitrogen addition and mowing could substantially change grassland stability in both functional and structural aspects. Our findings emphasize the need to study changes across levels of ecological organization for a more complete understanding of ecosystem responses to disturbances under widespread environmental changes.
Assuntos
Ecossistema , Pradaria , Resistência à Seca , Nitrogênio/análise , Biomassa , Poaceae/fisiologia , SoloRESUMO
Leaf stomatal and anatomical traits strongly influence plant productivity. Understanding the environmental adaptation mechanisms of leaf stomatal and anatomical traits and their relationship with ecosystem productivity is essential to better understand and predict the long-term adaptation strategies to climate change of moso bamboo forests. Here, we selected 6 sites within the moso bamboo distribution area, measured 3 leaf stomatal traits and 10 leaf anatomical traits of unmanaged moso bamboo stands. We explored the spatial variation characteristics of these traits and their response to environmental changes, assessed the relationships among these traits at regional scales through network analysis, and tested the direct and indirect effects of environmental, leaf stomatal and anatomical traits on gross primary productivity (GPP) of bamboo stands using structural equation modeling (SEM). The results showed that both climate and soil factors significantly affected leaf stomatal and anatomical traits of moso bamboo. Solar radiation (SR) and mean annual precipitation (MAP) out of the climatic factors were the key drivers of variation in leaf stomatal and anatomical traits, respectively. Soil moisture and nutrients out of the soil properties significantly affected both leaf stomatal and anatomical traits of moso bamboo. Network analysis further indicated that there was a significant correlation between leaf stomata and anatomical traits. Stomatal size (SS) showed the highest centrality value at the regional scale, indicating that it plays a key role in adjusting the adaptation of plants to external environmental conditions. SEM analysis showed that environment did not directly but indirectly affect GPP via stomatal performance. The environment explained 53.3% and 39.2% of the variation in leaf stomatal and anatomical traits, respectively, and leaf stomatal traits explained 20.8% of the regional variation in GPP. Our results demonstrate a direct effect of leaf stomatal traits rather than leaf anatomical traits on bamboo ecosystem productivity, which provides new insights into model predictions of bamboo forests under global climate change.
RESUMO
Soil fungi play an important role in nutrient cycling, mycorrhizal symbiosis, antagonism against pathogens, and organic matter decomposition. However, our knowledge about the community characteristics of soil fungi in relation to bamboo varieties is still limited. Here, we compared the fungal communities in different soil compartments (rhizosphere vs. bulk soil) of moso bamboo (Phyllostachys edulis) and its four varieties using ITS high-throughput sequencing technology. The fungal α diversity (Shannon index) in bulk soil was significantly higher than that in rhizosphere soil, but it was not affected by bamboo variety or interactions between the soil compartment and bamboo variety. Soil compartment and bamboo variety together explained 31.74% of the variation in fungal community diversity. Soil compartment and bamboo variety were the key factors affecting the relative abundance of the major fungal taxa at the phylum and genus levels. Soil compartment mainly affected the relative abundance of the dominant fungal phylum, while bamboo variety primarily influenced the dominant fungal genus. Network analysis showed that the fungal network in rhizosphere soil was more complex, stable, and connected than that in bulk soil. A FUNGuild database analysis indicated that both soil compartment and bamboo variety affect fungal functions. Our findings provide new insights into the roles of both soil compartments and plant species (including variety) in shaping soil fungal communities.
RESUMO
Atmospheric nitrogen (N) deposition is altering grassland productivity and community structure worldwide. Deposited N comes in different forms, which can have different consequences for productivity due to differences in their fertilization and acidification effects. We hypothesize that these effects may be mediated by changes in plant functional traits. We investigated the responses of aboveground primary productivity and community functional composition to addition of three nitrogen compounds (NH4NO3, [NH4]2SO4, and CO[NH2]2) at the rates of 0, 5, 10, 20 g N m-2 yr-1. We used structural equation modeling (SEM) to evaluate how functional structure influences the responses of productivity to the three N compounds. Nitrogen addition increased community-level leaf chlorophyll content but decreased leaf dry matter content and phosphorus concentration. These changes were mainly due to intra-specific variation. Functional dispersion of traits was reduced by N addition through changes in species composition. SEM revealed that fertilization effects were more important than soil acidification for the responses of productivity to CO(NH2)2 addition, which enhanced productivity by decreasing functional trait dispersion. In contrast, the effects of (NH4)2SO4 and NH4NO3 were primarily due to soil acidification, influencing productivity via community-weighted means of functional traits. Our results suggest that N forms with different fertilizing and acidifying effects influence productivity via different functional traits pathways. Our study also emphasizes the need for in situ experiments with the relevant N compounds to accurately understand and predict the ecological effects of atmospheric N deposition on ecosystems.
Assuntos
Ecossistema , Compostos de Nitrogênio , Pradaria , Nitrogênio/metabolismo , Solo/químicaRESUMO
Trait-based approaches have been widely applied to uncover the mechanisms determining community assembly and biodiversity-ecosystem functioning relationships. However, they have rarely been used in forest-steppe ecotones. These ecosystems are extremely sensitive to disturbances due to their relatively complex ecosystem structures, functionings and processes. In this study, we selected seven sites along a transect from closed canopy forests (CF) to forest-steppe ecotones (FSE) and meadow steppes (MS) in northeast China. Six leaf functional traits (i.e. leaf nitrogen and phosphorus contents, leaf length and thickness, single leaf area and leaf mass per unit area, LMA) as well as the community composition and aboveground biomass at each site were measured. Both functional trait diversity indices (richness, evenness and divergence) and community-weighted mean trait values (CWMs) were calculated to quantify community trait distributions. We found that dominant species in the FSE communities showed acquisitive strategies with highest leaf nitrogen (Mean ± SE: 19.6 ± 0.5 mg g-1) and single leaf area (19.2 ± 1.3 cm2), but the lowest LMA (59.6 ± 1.3 g cm-2) values compared to adjacent CF and MS communities. The ecotone communities also exhibited the largest functional trait richness (TOP), evenness (TED) and divergence (FDis) values (0.46, 0.92 and 0.67, respectively). Overall, niche differentiation emerges as the main mechanism influencing the coexistence of plant species in ecotone ecosystems. In addition, CWMs of leaf traits were the most important predictors for estimating variations in aboveground productivity across the transect, suggesting a major influence of dominant species. Our findings suggest that vegetation management practices in forest-steppe ecotones should increasingly focus on community functional trait diversity, and support the establishment and regeneration of plant species with rapid resource acquisition strategies.
Assuntos
Ecossistema , Florestas , Biodiversidade , Biomassa , Plantas , NitrogênioRESUMO
Contamination of soils by microplastics can have profound ecological impacts on terrestrial ecosystems and has received increasing attention. However, few studies have considered the impacts of soil microplastics on plant communities and none has tested the impacts of spatial heterogeneity in the horizontal distribution of microplastics in the soil on plant communities. We grew experimental plant communities in soils with either a homogeneous or a heterogeneous distribution of each of six common microplastics, i.e., polystyrene foam (EPS), polyethylene fiber (PET), polyethylene bead (HDPE), polypropylene fiber (PP), polylactic bead (PLA) and polyamide bead (PA6). The heterogeneous treatment consisted of two soil patches without microplastics and two with a higher (0.2%) concentration of microplastics, and the homogeneous treatment consisted of four patches all with a lower (0.1%) concentration of microplastics. Thus, the total amounts of microplastics in the soils were exactly the same in the two treatments. Total and root biomass of the plant communities were significantly higher in the homogeneous than in the heterogeneous treatment when the microplastic was PET and PP, smaller when it was PLA, but not different when it was EPS, HDPE or PA6. In the heterogeneous treatment, total and root biomass were significantly smaller in the patches with than without microplastics when the microplastic was EPS, but greater when the microplastic was PET or PP. Additionally, in the heterogeneous treatment, root biomass was significantly smaller in the patches with than without microplastics when the microplastic was HDPE, and shoot biomass was also significantly smaller when the microplastic was EPS or PET. The heterogeneous distribution of EPS in the soil significantly decreased community evenness, but the heterogeneous distribution of PET increased it. We conclude that soil heterogeneity in the horizontal distribution of microplastics can influence productivity and species composition of plant communities, but such an effect varies depending on microplastic chemical composition (types) and morphology (shapes).
RESUMO
Bacteria are a crucial component of forest soil biodiversity and play an important role in numerous ecosystem processes. Here, we studied the patterns of soil bacterial community diversity and structure in a climax forest (Larix gmelinii; LG) compared with those in degraded forest ecosystems of four forest vegetation types (BD, Betula dahurica; BP, Betula platyphylla; QM, Quercus mongolica; and LGQM, a mixed coniferous-broadleaved forest composed of Larix gmelinii and Quercus mongolica) in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve in northern China, using Illumina MiSeq sequencing of 16 S rRNA genes. Soil physicochemical properties (pH, soil organic carbon = SOC, total nitrogen = TN, carbon/nitrogen = C/N, total phosphorous = TP, available nitrogen = AN, available phosphorous = AP) differed significantly (p < .05) among the five forests. SOC, C/N, TP, AN, and AP were highest in QM, whereas SOC was lowest in LGQM. Soil pH was lowest in BD and highest in LGQM. α diversity was highest in LG and lowest in QM. The soil bacterial community composition in the climax forest was significantly different from that in the four degraded forests (p < .05). The dominant bacterial phyla were Acidobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Firmicutes, Chloroflexi, and Rokubacteria. The highest relative abundances of these phyla were: 30.7% for Acidobacteria in LGQM, 42.6% for Proteobacteria in LG, 17.6% for Verrucomicrobia in BD, 5.5% for Firmicutes in BP, and 6.9% for Actinobacteria in QM. The dominant bacterial genera across the five forest vegetation types were Bryobacter and some poorly characterized taxa (e.g., Candidatus_Udaeobacter and Candidatus_Solibacter). Redundancy analysis indicated that SOC, C/N, TP, AN, and AP were the main soil physicochemical properties that shaped the bacterial communities. Our study revealed distinct bacterial diversity and composition in the climax forest compared with values in degraded forests, suggesting that the biotic and abiotic factors associated with climax ecosystems play an important role in shaping soil bacterial community structure and thus biogeochemical functions. The results of this study contribute to a deeper understanding and better predictions of the network among belowground systems and of the functions and services of degraded forests compared with climax ecosystems.
RESUMO
Parental effects can influence offspring fitness, which may further impact interspecific competition. However, few studies have tested the role of clonal parental effects in regulating interspecific interactions and examined the underlying mechanisms. We conducted two consecutive experiments with two clonal plants (Pistia stratiotes and Eichhornia crassipes). In the first experiment, the mother ramet of P. stratiotes and E. crassipes were grown in two nutrient levels and treated with a DNA demethylation reagent (5-azacytidine) or not. In the second experiment, the offspring ramets from each of the four treatments in the first experiment were grown alone (no competition) or with a heterospecific neighbor (with interspecific competition). We found no parental nutrient effect on the competitive ability of E. crassipes, but a significant parental nutrient effect of both E. crassipes and P. stratiotes on the competitive ability of P. stratiotes. Furthermore, the parental nutrient effect of P. stratiotes on the competitive ability of P. stratiotes varied depending on the DNA methylation status of both P. stratiotes and E. crassipes. These clonal parental effects were related to resource provisioning and/or DNA methylation. We conclude that clonal parental nutrient effects can regulate interspecific competition between P. stratiotes and E. crassipes by altering the competitive ability of P. stratiotes. Both resource provisioning and epigenetic mechanisms can be involved in these clonal parental effects. By regulating interspecific competition, clonal parental effects may further influence species coexistence, community structure, and ecosystem functioning.
RESUMO
Current increases in not only the intensity and frequency but also the duration of drought events could affect the growth, physiology, and mortality of trees. We experimentally studied the effects of drought duration in combination with fertilization on leaf water potential, gas exchange, growth, tissue levels of non-structural carbohydrates (NSCs), tissue NSC consumption over-winter, and recovery after drought release in oak (Quercus petraea) and beech (Fagus sylvatica) saplings. Long drought duration (>1 month) decreased leaf water potential, photosynthesis, and NSC concentrations in both oak and beech saplings. Nitrogen fertilization did not mitigate the negative drought effects on both species. The photosynthesis and relative height increment recovered in the following rewetting year. Height growth in the rewetting year was significantly positively correlated with both pre- and post-winter root NSC levels. Root carbon reserve is critical for tree growth and survival under long-lasting drought. Our results indicate that beech is more sensitive to drought and fertilization than oak. The present study, in a physiological perspective, experimentally confirmed the view that the European beech, compared to oak, may be more strongly affected by future environmental changes.
RESUMO
Pine mistletoe is a hemiparasitic shrub that can produce its own photosynthates. There is a lack of knowledge about the interaction of mistletoe and host under varying environmental condition that might influence carbon gain and allocation. In a 13C-pulse labeling experiment with mature Pinus sylvestris (pine) infected by mistletoes grown in naturally dry or irrigated conditions, (1) mistletoe clusters were shielded from 13CO2 added, and (2) mistletoes or host needles were removed to manipulate the local assimilate and water availability. No 13C signal was found in shielded mistletoes, indicating no carbon transfer from the host to the mistletoe. When the pine needles were removed from girdled branches, no 13C signal was found in the host tissues, implying no carbon transfer from mistletoe to the host. However, mistletoes on needle-removed pine trees accumulated more labeled assimilates and had higher non-structural carbohydrate (NSC) concentrations only under naturally dry conditions but not in irrigated plots. Our results suggest that mistletoes show full carbon autonomy, as they neither receive carbon from nor provide carbon resource to the host trees. Moreover, the high assimilation capacity of mistletoes seems to be constrained by the host water use under dry conditions, suggesting that drought stress is not only negatively impacting trees but also mistletoes. Therefore, we conclude that the hemiparasites live on their own in terms of carbon gain which, however, depends on the water provided by the host tree.