Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(11): 456, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917401

RESUMO

To develop a convenient method for simultaneous detection of As(III/V), Cr(III/VI), and Fe(II/III), three morphologies of CeO2 oxidase have been prepared. Based on the difference in oxidase activity and binding ability with substrate TMB of CeO2 of different morphologies, a 3 (Signal unit) × 6 (Target number) × 5 (Repetition) sensor array was constructed to realize simultaneous detection of six variable valence metal ions As(III/V), Cr(III/VI), and Fe(II/III). The lowest detection limit of the array for metal ions was 1.68 µg/L. The analysis of environmental samples with multiple metal ions (binary and ternary mixtures) co-existing has confirmed that the sensor array can achieve simultaneous qualitative and quantitative results for composite samples. This study not only revealed the influencing factors of crystal morphology regulation on oxidase activity, but also provided a scheme for the morphology detection of easily convertible metal ions in the field through the construction of the sensor array.

2.
Front Immunol ; 13: 963379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713428

RESUMO

Background: The etiology and pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are generally believed to be related to immune dysfunction and intestinal microbiota disorder. However, the exact mechanism is not yet fully understood. The pathological changes associated with dextran sodium sulfate (DSS)-induced colitis are similar to those in human UC. As a subgroup of the innate immune system, group 3 innate lymphoid cells (ILC3s) are widely distributed in the lamina propria of the intestinal mucosa, and their function can be regulated by a variety of molecules. Musashi2 (MSI2) is a type of evolutionarily conserved RNA-binding protein that maintains the function of various tissue stem cells and is essential for postintestinal epithelial regeneration. The effect of MSI2 deficiency in ILC3s on IBD has not been reported. Thus, mice with conditional MSI2 knockout in ILC3s were used to construct a DSS-induced colitis model and explore its effects on the pathogenesis of IBD and the species, quantity and function of the intestinal microbiota. Methods: Msi2flox/flox mice (Msi2fl/fl ) and Msi2flox/floxRorcCre mice (Msi2ΔRorc ) were induced by DSS to establish the IBD model. The severity of colitis was evaluated by five measurements: body weight percentage, disease activity index, colon shortening degree, histopathological score and routine blood examination. The species, quantity and function of the intestinal microbiota were characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. Results: MSI2 was knocked out in the ILC3s of Msi2ΔRorc mice. The Msi2ΔRorc mice exhibited reductions in body weight loss, the disease activity index, degree of colon shortening, tissue histopathological score and immune cells in the peripheral blood compared to those of Msi2fl/fl mice after DSS administration. The 16S rRNA sequencing results showed that the diversity of the intestinal microbiota in DSS-treated Msi2ΔRorc mice changed, with the abundance of Firmicutes increasing and that of Bacteroidetes decreasing. The linear discriminant analysis effect size (LEfSe) approach revealed that Lactobacillaceae could be the key bacteria in the Msi2ΔRorc mouse during the improvement of colitis. Using PICRUST2 to predict the function of the intestinal microbiota, it was found that the functions of differential bacteria inferred by modeling were mainly enriched in infectious diseases, immune system and metabolic functions. Conclusions: MSI2 deficiency in ILC3s attenuated DSS-induced colonic inflammation in mice and affected intestinal microbiota diversity, composition, and function, with Lactobacillaceae belonging to the phylum Firmicutes possibly representing the key bacteria. This finding could contribute to our understanding of the pathogenesis of IBD and provide new insights for its clinical diagnosis and treatment.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Proteínas de Ligação a RNA , Animais , Camundongos , Bactérias/genética , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Imunidade Inata , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/genética , Linfócitos/metabolismo , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA