Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Biosci ; 36(2): 191-199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35760404

RESUMO

OBJECTIVE: This study aimed to investigate the significant single nucleotide polymorphisms (SNPs) and genes associated with nine reproduction and morphological traits in three breed populations of Chinese goats. METHODS: The genome-wide association of nine reproduction and morphological traits (litter size, nipple number, wattle, skin color, coat color, black dorsal line, beard, beard length, and hind leg hair) were analyzed in three Chinese native goat breeds (n = 336) using an Illumina Goat SNP50 Beadchip. RESULTS: A total of 17 genome-wide or chromosome-wide significant SNPs associated with one reproduction trait (litter size) and six morphological traits (wattle, coat color, black dorsal line, beard, beard length, and hind leg hair) were identified in three Chinese native goat breeds, and the candidate genes were annotated. The significant SNPs and corresponding putative candidate genes for each trait are as follows: two SNPs located on chromosomes 6 (CSN3) and 24 (TCF4) for litter size trait; two SNPs located on chromosome 9 (KATNA1) and 1 (UBASH3A) for wattle trait; three SNPs located on chromosome 26 (SORCS3), 24 (DYM), and 20 (PDE4D) for coat color trait; two SNPs located on chromosome 18 (TCF25) and 15 (CLMP) for black dorsal line trait; four SNPs located on chromosome 8, 2 (PAX3), 5 (PIK3C2G), and 28 (PLA2G12B and OIT3) for beard trait; one SNP located on chromosome 18 (KCNG4) for beard length trait; three SNPs located on chromosome 17 (GLRB and GRIA2), 28 (PGBD5), and 4 for hind leg hair trait. In contrast, there were no SNPs identified for nipple number and skin color. CONCLUSION: The significant SNPs or genes identified in this study provided novel insights into the genetic mechanism underlying important reproduction and morphological traits of three local goat breeds in Southern China as well as further potential applications for breeding goats.

2.
Physiol Genomics ; 49(12): 703-711, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972038

RESUMO

The Youzhou dark goat is a natural mutant with dark skin over the whole body including the visible mucous membranes. In the present study, we characterized 100-day-old fetal skin at the histomorphological and transcriptomic levels in dark-skinned (Youzhou dark goat) and white-skinned (Yudong white goat) goats with deep RNA sequencing, quantitative PCR, and histological methods. Histological analysis indicated that there were marked differences in both melanin distribution and epidermal ultrastructure between the hyperpigmented and normal skin in two breeds of goat. Subsequent analyses suggested that a presumed structure variation (duplication or insertion) in ASIP might be responsible for its lower expression in the hyperpigmented skin (Youzhou dark goat) by determining the distribution of melanocytes across the body at early development stage. Analyses for genes with differential expression between the dark-skinned and white-skinned goats indicated the network composed of ASIP-MC1R, ECM-receptor interaction, and MAPK signaling might play crucial roles in the determination of skin pigmentation in fetal goats. Moreover, we also identified 1,616 novel transcripts in goat skin by RNA sequencing, which may represent two distinct groups of transcript based on their characteristics. Our findings contribute to the understanding of the characteristics of global gene expression in early-stage skin pigmentation and development and describe an animal model for human diseases associated with pigmentation.


Assuntos
Pigmentação da Pele/genética , Transcriptoma/genética , Animais , Cabras , Análise de Sequência de RNA , Pigmentação da Pele/fisiologia
3.
BMC Genomics ; 17: 67, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26785828

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play roles in almost all biological processes; however, their function and profile in skin development and pigmentation is less understood. In addition, because lncRNAs are species-specific, their function in goats has not been established. RESULT: We systematically identified lncRNAs in 100-day-old fetal skin by deep RNA-sequencing using the Youzhou dark goat (dark skin) and Yudong white goat (white skin) as a model of skin pigmentation. A total of 841,895,634 clean reads were obtained from six libraries (samples). We identified 1336 specific lncRNAs in fetal skin that belonged to three subtypes, including 999 intergenic lncRNAs (lincRNAs), 218 anti-sense lncRNAs, and 119 intronic lncRNAs. Our results demonstrated significant differences in gene architecture and expression among the three lncRNA subtypes, particularly in terms of density and position bias of transpose elements near the transcription start site. We also investigated the impact of lncRNAs on its target genes in cis and trans, indicating that these lncRNAs have a strict tissue specificity and functional conservation during skin development and pigmentation. CONCLUSION: The present study provides a resource for lncRNA studies in diseases involved in pigmentation and skin development. It expands our knowledge about lncRNA biology as well as contributes to the annotation of the goat genome.


Assuntos
Cabras/genética , RNA Longo não Codificante/genética , Pigmentação da Pele/genética , Animais , Feminino , Feto/metabolismo , Íntrons/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA