Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 8565, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39362889

RESUMO

Seed size, a key determinant of rice yield, is regulated by brassinosteroid (BR); however, the BR pathway in rice has not been fully elucidated. Here, we report the cloning and characterization of the quantitative trait locus Rice Big Grain 1 (qRBG1) from single-segment substitution line Z499. Our data show that qRBG1Z is an unselected rare promoter variation that reduces qRBG1 expression to increase cell number and size, resulting in larger grains, whereas qRBG1 overexpression causes smaller grains in recipient Nipponbare. We demonstrate that qRBG1 encodes a non-canonical BES1 (Bri1-EMS-Suppressor1)/BZR1(Brassinazole-Resistant1) family member, OsBZR5, that regulates grain size upon phosphorylation by OsGSK2 (GSK3-like Kinase2) and binding to D2 (DWARF2) and OFP1 (Ovate-Family-Protein1) promoters. qRBG1 interacts with OsBZR1 to synergistically repress D2, and to antagonistically mediate OFP1 for grain size. Our results reveal a regulatory network controlling grain size via OsGSK2-qRBG1-OsBZR1-D2-OFP1 module, providing a target for improving rice yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassinosteroides/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Fosforilação , Variação Genética
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569388

RESUMO

Rice chromosomal segment substitution lines (CSSLs) are ideal materials for studying quantitative traits such as grain size. Here, a rice large-grain CSSL-Z403 was identified among progeny of the recipient Xihui18 and the donor Jinhui35 based on molecular marker-assisted selection. Z403 carried 10 substitution segments with average length of 3.01 Mb. Then, a secondary F2 population derived from a cross between Xihui18 and Z403 was used to map quantitative trait loci (QTL) for grain size. Six QTLs distributed on chromosomes 5, 6, 7, 9 and 12 were detected. Finally four single-segment substitution lines (SSSLs) and two dual-segment substitution lines (DSSLs) carrying these target QTLs were constructed, and 10 novel QTLs were identified by four SSSLs. The large grain of Z403 was controlled at least by qGWT5, qGWT7, qGWT9 and qGWT12, and its grain weight was influenced through grain length QTL such as qGL5, qGL6, qGL9 and qGL12, as well as grain width QTL such as qGW5, qGW7, qGW9 and qGW12. Among 16 QTLs, four QTLs including qGL6, etc., might be novel compared with the reported documents. Again, positive or less negative epistatic effects between two non-allelic QTLs (additive effect > 0) may assist screening the genotype with larger grain size in further selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA