Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Sci Rep ; 14(1): 11347, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762582

RESUMO

In order to increase the precision and effectiveness of power system analysis and fault diagnosis, this study aims to assess the power systems in the energy sector while utilizing artificial intelligence (AI) and environmental social governance (ESG). First, the ESG framework is presented in this study to fully account for the effects of the power system on the environment, society, and governance. Second, to coordinate the operation of various components and guarantee the balance and security of the power system, the CNN-BiLSTM power load demand forecasting model is built by merging convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Lastly, the particle swarm optimization (PSO) algorithm is used to introduce and optimize the deep belief network (DBN), and a power grid fault diagnostic model is implemented using the PSO technique and DBN. The model's performance is assessed through experimentation. The outcomes demonstrate how the CNN-BiLSTM algorithm significantly increases forecasting accuracy while overcoming the drawback of just having one dimension of power load data. The values of 0.054, 0.076, and 0.102, respectively, are the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Effective processing of large-scale nonlinear data is achieved in the area of power grid fault diagnosis, resulting in prediction accuracy of 96.22% and prediction time of only 129.94 s. This is clearly better than other algorithms and increases fault prediction efficiency and accuracy. Consequently, the model presented in this study not only produces impressive results in fault diagnosis and load demand forecasting, but also advances the field of power system analysis in the energy industry and offers a significant amount of support for the sustainable and intelligent growth of the energy industry.

2.
Diagnostics (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611644

RESUMO

The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs may play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.

3.
Angew Chem Int Ed Engl ; 63(20): e202401921, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38498603

RESUMO

In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.


Assuntos
Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Microbolhas , Engenharia Metabólica
4.
Adv Sci (Weinh) ; : e2308710, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477453

RESUMO

The synthesis of allenyl boronates is an important yet challenging topic in organic synthesis. Reported herein is an NHC-gold-catalyzed 1,3-H shift toward allenyl boronates synthesis from simple propargylic B(MIDA)s. Mechanistic studies suggest dual roles of the boryl moiety in the reaction: to activate the substrate for isomerization and at the same time, to prevent the allene product from further isomerization. These effects should be a result of α-anion stabilization and α-cation destabilization conferred by the B(MIDA) moiety, respectively. The NHC-Au catalyst, which is commercially available, is also found to be reactive in alkyne-to-1,3-diene isomerization reactions in an atom-economic and base-free manner.

5.
Biomedicines ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398003

RESUMO

The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.

6.
Angew Chem Int Ed Engl ; 63(8): e202319030, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179851

RESUMO

The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.

7.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886481

RESUMO

The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.

8.
Cancer Imaging ; 23(1): 107, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904254

RESUMO

BACKGROUND: The glymphatic system actively exchanges cerebrospinal fluid (CSF) and interstitial fluid (ISF) to eliminate toxic interstitial waste solutes from the brain parenchyma. Impairment of the glymphatic system has been linked to several neurological conditions. Glioblastoma, also known as Glioblastoma multiforme (GBM) is a highly aggressive form of malignant brain cancer within the glioma category. However, the impact of GBM on the functioning of the glymphatic system has not been investigated. Using dynamic contrast-enhanced magnetic resonance imaging (CE-MRI) and advanced kinetic modeling, we examined the changes in the glymphatic system in rats with GBM. METHODS: Dynamic 3D contrast-enhanced T1-weighted imaging (T1WI) with intra-cisterna magna (ICM) infusion of paramagnetic Gd-DTPA contrast agent was used for MRI glymphatic measurements in both GBM-induced and control rats. Glymphatic flow in the whole brain and the olfactory bulb was analyzed using model-derived parameters of arrival time, infusion rate, clearance rate, and residual that describe the dynamics of CSF tracer over time. RESULTS: 3D dynamic T1WI data identified reduced glymphatic influx and clearance, indicating an impaired glymphatic system due to GBM. Kinetic modeling and quantitative analyses consistently indicated significantly reduced infusion rate, clearance rate, and increased residual of CSF tracer in GBM rats compared to control rats, suggesting restricted glymphatic flow in the brain with GBM. In addition, our results identified compromised perineural pathway along the optic nerves in GBM rats. CONCLUSIONS: Our study demonstrates the presence of GBM-impaired glymphatic response in the rat brain and impaired perineural pathway along the optic nerves. Reduced glymphatic waste clearance may lead to the accumulation of toxic waste solutes and pro-inflammatory signaling molecules which may affect the progression of the GBM.


Assuntos
Glioblastoma , Sistema Glinfático , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/metabolismo , Imageamento por Ressonância Magnética/métodos , Meios de Contraste
9.
Chem Rec ; 23(12): e202300231, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665225

RESUMO

Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the ß position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.

10.
Front Med (Lausanne) ; 10: 1189614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601793

RESUMO

Background and objective: Pituitary tumor in patients induces adverse alterations in the brain, accompanied by cognitive deficits. Dysfunction of glymphatic waste clearance results in accumulation of neurotoxic products within the brain, leading to cognitive impairment. However, the status of glymphatic function in the brain with pituitary tumor is unknown. Using magnetic resonance imaging (MRI) and an advanced mathematical modeling, we investigated the changes of glymphatic transport in the rats carrying spontaneous pituitary tumor. Methods: Rats (22-24 months, female, Wistar) with and without pituitary tumor (n = 7/per group) underwent the identical experimental protocol. MRI measurements, including T2-weighted imaging and dynamic 3D T1-weighted imaging with intracisternal administration of contrast agent, were performed on each animal. The contrast-induced enhancement in the circle of Willis and in the glymphatic influx nodes were observed on the dynamic images and verified with time-signal-curves (TSCs). Model-derived parameters of infusion rate and clearance rate that characterize the kinetics of glymphatic tracer transport were evaluated in multiple representative brain regions. Results: Our imaging data demonstrated a higher incidence of partially enhanced circle of Willis (86 vs. 14%; p < 0.033) and a lower incidence of enhancement in glymphatic influx nodes of pituitary (71 vs. 100%) and pineal (57 vs. 86%) recesses in the rats with pituitary tumor than in the rats with normal appearance of pituitary gland, indicating an intensification of impaired peri-vascular pathway and impeded glymphatic transport due to the presence of pituitary tumor. Consistently, our kinetic modeling and regional cerebral tissue quantification revealed significantly lower infusion and clearance rates in all examined regions in rats with spontaneous pituitary tumor than in non-tumor rats, representing a suppressed glymphatic transport in the brain with pituitary tumor. Conclusion: Our study demonstrates the compromised glymphatic transport in the rat brain with spontaneous pituitary tumor. The reduced efficiency in cerebral waste clearance increases the risk for neurodegeneration in the brain that may underlie the cognitive impairment commonly seen in patients with pituitary tumors.

11.
Adv Sci (Weinh) ; 10(30): e2304282, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37632709

RESUMO

Electrophilic addition reaction to alkynes is of fundamental importance in organic chemistry, yet the regiocontrol when reacting with unsymmetrical 1,2-dialkyl substituted alkynes is often problematic. Herein, it is demonstrated that the rarely recognized ß-boron effect can confer a high level of site-selectivity in several alkyne electrophilic addition reactions. A broad range of highly functionalized and complex organoborons are thus formed under simple reaction conditions starting from propargylic MIDA (N-methyliminodiacetic acid) boronates. These products are demonstrated to be valuable building blocks in organic synthesis. In addition to the regiocontrol, this study also observes a drastic rate enhancement upon B(MIDA) substitution. Theoretical calculation reveals that the highest occupied molecular obital (HOMO) energy level of propargylic B(MIDA) is significantly raised by 0.3 eV, and the preferential electrophilic addition to the γ position is due to its higher HOMO orbital coefficient and more negative natural bond orbital (NBO) charge compared to the ß position. This study demonstrates the potential of utilizing the ß-boron effect in stereoelectronic control of chemical transformations, which can inspire further research in this area.

12.
Chem Asian J ; 18(16): e202300476, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37366264

RESUMO

Organofluorine compounds have been widely used in pharmaceutical, agrochemical, and material sciences. Reported herein are divergent fluorination reactions of vinylcyclopropanes with different electrophiles, which allow the facile synthesis of homoallylic monofluorides and vicinal-difluorides through ring-opening 1,5-hydrofluorination and ring-retaining 1,2-difluorination, respectively. Both protocols feature mild conditions, simple operations, good functional group tolerance, and generally good yields. The practicality of these reactions is demonstrated by their scalability, as well as the successful conversion of the formed homoallylic monofluorides into other complex fluorinated molecules.

13.
J Med Chem ; 66(11): 7387-7404, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253101

RESUMO

Metabolic reprogramming is a crucial hallmark of tumorigenesis. Modulating the reprogrammed energy metabolism is an attractive anticancer therapeutic strategy. We previously found a natural product, bouchardatine, modulated aerobic metabolism and inhibited proliferation in the colorectal cancer cell (CRC). Herein, we designed and synthesized a new series of bouchardatine derivatives to discover more potential modulators. We applied the dual-parametric high-content screening (HCS) to evaluate their AMP-activated protein kinase (AMPK) modulation and CRC proliferation inhibition effect simultaneously. And we found their antiproliferation activities were highly correlated to AMPK activation. Among them, 18a was identified with nanomole-level antiproliferation activities against several CRCs. Interestingly, the evaluation found that 18a selectively upregulated oxidative phosphorylation (OXPHOS) and inhibited proliferation by modulating energy metabolism. Additionally, this compound effectively inhibited the RKO xenograft growth along with AMPK activation. In conclusion, our study identified 18a as a promising candidate for CRC treatment and suggested a novel anti-CRC strategy by AMPK activating and OXPHOS upregulating.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Colorretais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Alcaloides Indólicos/farmacologia , Metabolismo Energético , Proliferação de Células , Linhagem Celular Tumoral
14.
Chemistry ; 29(39): e202301011, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37129911

RESUMO

The facile synthesis of stereo-defined and transformable functionality-enriched building blocks is of great importance in modern organic chemistry, as it allows the rapid and divergent assembly of complex molecules. Herein a halogen electrophile (N-bromosuccinimide and N-iodosuccinimide) initiated semipinacol rearrangement reaction of B(MIDA)-propargylic alcohols (MIDA=N-methyliminodiacetyl) by aryl migration towards the synthesis of amphoteric α-haloalkenyl boronates in moderate to good yields with excellent stereoselectivities is reported. The value of the products is evidenced by their ability to undergo divergent conversions to polysubstituted alkenes through manipulation of the C-B and C-X (X=Br, I) bonds and the carbonyl group.

15.
iScience ; 26(3): 106255, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36909668

RESUMO

The primary amino group has been seldom utilized as a transformable functionality in organic synthesis. Reported herein is a deaminative halogenation of primary amines using N-anomeric amide as the nitrogen-deletion reagent. Both aliphatic and aromatic amines are competent substrates for direct halogenations. The mildness and robustness of the protocol are evidenced by the successful reactions of several complex- and functional group-enriched bioactive compounds or drugs. Elaboration of the resulting products provides interesting analogues of drug molecules.

16.
J Am Chem Soc ; 145(13): 7548-7558, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947220

RESUMO

Electrophilic addition to alkenes is a textbook-taught reaction, yet it is not always possible to control the regioselectivity of addition to unsymmetrical 1,2-disubstituted substrates. We report the observation and applications of the ß-boron effect that accounts for high regioselectivity in electrophilic addition reactions to allylic MIDA (N-methyliminodiacetic acid) boronates. While the well-established ß-silicon effect bears partial resemblance to the observed reactivity, the silyl group is typically lost during functionalization. In contrast, the boryl moiety is retained in the product when B(MIDA) is used as the nucleophilic stabilizer. Mechanistic studies elucidate the origin of this effect and demonstrate how σ(C-B) hyperconjugation helps stabilize the incipient carbocation. This transformation represents a rare example of the stereospecific hydrohalogenation of secondary allyl MIDA-boronates that proceeds in a syn-fashion.

17.
Org Lett ; 25(7): 1099-1103, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36790117

RESUMO

α-Boryl ketones are traditionally challenging targets in organic synthesis. Reported herein is a mild and metal-free synthesis of α-boryl ketones via the hydration or oxidation of N-methyliminodiacetyl boronate (B(MIDA))-decorated alkynes. A new hydration system comprised of AcCl and H2O in HFIP allows the hydration of arylethynyl B(MIDA)s at room temperature with decent functional group tolerance. An oxidative carbon deletion process of propargylic B(MIDA)s is also developed for the synthesis of aliphatic α-boryl ketones. An intriguing ß-boron effect was observed to account for the unique site- and chemoselectivities. The application of the products in the synthesis of borylated heterocycles was demonstrated.

18.
Nat Commun ; 13(1): 7018, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384960

RESUMO

Neuromorphic machines are intriguing for building energy-efficient intelligent systems, where spiking neurons are pivotal components. Recently, memristive neurons with promising bio-plausibility have been developed, but with limited reliability, bulky capacitors or additional reset circuits. Here, we propose an anti-ferroelectric field-effect transistor neuron based on the inherent polarization and depolarization of Hf0.2Zr0.8O2 anti-ferroelectric film to meet these challenges. The intrinsic accumulated polarization/spontaneous depolarization of Hf0.2Zr0.8O2 films implements the integration/leaky behavior of neurons, avoiding external capacitors and reset circuits. Moreover, the anti-ferroelectric neuron exhibits low energy consumption (37 fJ/spike), high endurance (>1012), high uniformity and high stability. We further construct a two-layer fully ferroelectric spiking neural networks that combines anti-ferroelectric neurons and ferroelectric synapses, achieving 96.8% recognition accuracy on the Modified National Institute of Standards and Technology dataset. This work opens the way to emulate neurons with anti-ferroelectric materials and provides a promising approach to building high-efficient neuromorphic hardware.


Assuntos
Redes Neurais de Computação , Neurônios , Reprodutibilidade dos Testes , Neurônios/fisiologia , Sinapses/fisiologia , Computadores
19.
J Med Chem ; 65(18): 12346-12366, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36053318

RESUMO

The development of triple-negative breast cancer (TNBC) is highly associated with G-quadruplex (G4); thus, targeting G4 is a potential strategy for TNBC therapy. Because concomitant histone deacetylases (HDAC) inhibition could amplify the impact of G4-targeting compounds, we designed and synthesized two novel series of G4/HDAC dual-targeting compounds by connecting the zinc-binding pharmacophore of HDAC inhibitors to the G4-targeting isaindigotone scaffold (1). Among the new compounds, a6 with the potent HDAC inhibitory and G4 stabilizing activity could induce more DNA G4 formation than SAHA and 1 in TNBC cells. Remarkably, a6 caused more G4-related DNA damage and G4-related differentially expressed genes, consistent with its effect on disrupting the cell cycle, invasion, and glycolysis. Furthermore, a6 significantly suppresses the proliferation of various TNBC cells and the MDA-MB-231 xenograft model without evident toxicity. Our study suggests a novel strategy for TNBC therapeutics through dual-targeting HDAC and G4.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , DNA/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Zinco/farmacologia
20.
J Med Chem ; 65(19): 12675-12700, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36121464

RESUMO

c-MYC is a key driver of tumorigenesis. Repressing the transcription of c-MYC by stabilizing the G-quadruplex (G4) structure with small molecules is a potential strategy for cancer therapy. Herein, we designed and synthesized 49 new derivatives by introducing carbohydrates to our previously developed c-MYC G4 ligand 1. Among these compounds, 19a coupled with a d-glucose 1,2-orthoester displayed better c-MYC G4 binding, stabilization, and protein binding disruption abilities than 1. Our further evaluation indicated that 19a blocked c-MYC transcription by targeting the promoter G4, leading to c-MYC-dependent cancer cell death in triple-negative breast cancer cell MDA-MB-231. Also, 19a significantly inhibited tumor growth in the MDA-MB-231 mouse xenograft model accompanied by c-MYC downregulation. Notably, the safety of 19a was dramatically improved compared to 1. Our findings indicated that 19a could become a promising anticancer candidate, which suggested that introducing carbohydrates to improve the G4-targeting and antitumor activity is a feasible option.


Assuntos
Antineoplásicos , Quadruplex G , Inibidores de 14-alfa Desmetilase , Animais , Antineoplásicos/química , Carboidratos , Glucose , Humanos , Imidazóis , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Açúcares , Edulcorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA