Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Int J Med Sci ; 21(6): 1103-1116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774759

RESUMO

Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Biomarcadores Tumorais , Neoplasias Colorretais , Ferroptose , Regulação Neoplásica da Expressão Gênica , Nomogramas , Humanos , Ferroptose/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Prognóstico , Biomarcadores Tumorais/genética , Sistema y+ de Transporte de Aminoácidos/genética , Masculino , Feminino , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Idoso
2.
Plants (Basel) ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732443

RESUMO

Research on Satyrium nepalense var. ciliatum (Lindl.) Hook. f. has primarily focused on populations in Northwestern Yunnan, with limited studies on pollination syndromes and insect behavior. In addition, it is geographically limited in its breeding system studies. Here, pollination syndromes, florivory, and breeding systems of S. nepalense var. ciliatum from Liangwang Mountain (Central Yunnan, China) were investigated through field work, microscope, scanning electron microscope (SEM), and parafin section. It was revealed that the pollination syndrome was possessing out-crossing, such as bright color, a developed rostellum, nectar glands in the spur, and food hairs at the lip base. The color and nectar attracted flower visitors, and florivory was observed. Some flower visitors pollinated their companion species. Ants were identified as floral visitors for the first time in Satyrium, although substantial pollination was not observed. Ants might be potential pollinators. S. nepalense var. ciliatum possessed a mixed breeding system, including selfing, out-crossing, and apomixis, with apomixis being predominant in nature. It is suggested that the pollination syndrome, florivory, and pollination competition would contribute to its mixed breeding systems, particularly leading to the occurrence of apomixis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38729032

RESUMO

Body color is an important visual indicator of crustacean quality and plays a major role in consumer acceptability, perceived quality, and the market price of crustaceans. The freshwater prawn (Macrobrachium rosenbergii) has two distinct phenotypic variations, characterized by dark blue and light yellow body colors. However, the underlying mechanisms regulating the body color of M. rosenbergii remain unclear. In this study, the composition of shell color parameters and pigment cells of raw and cooked dark blue and light yellow M. rosenbergii was investigated and the mechanisms associated with body color were elucidated by transcriptome analysis. The results showed significant differences in the raw shells of the dark blue and light yellow M. rosenbergii (L: 26.20 ± 0.53 vs. 29.25 ± 0.45; a: -0.88 ± 0.19 vs. 0.35 ± 0.18; b: 1.73 ± 0.20 vs. 3.46 ± 0.37; dE: 70.33 ± 0.53 vs. 67.34 ± 0.45, respectively, p = 0.000) as well as the cooked shells (L: 58.14 ± 0.81 vs. 55.78 ± 0.55; a: 19.30 ± 0.56 vs. 16.42 ± 0.40; b: 23.60 ± 0.66 vs. 20.30 ± 0.40, respectively, p < 0.05). Transcriptome differential gene analysis obtained 39.02 Gb of raw data and 158,026 unigenes. Comprehensive searches of the SwissProt, Nr, KEGG, Pfam, and KOG databases resulted in successful annotations of 23,902 (33 %), 40,436 (25.59 %), 32,015 (20.26 %), 26,139 (16.54 %), and 22,155 (14.02 %) proteins, respectively. By KEGG pathway analysis, numerous differentially expressed genes were related to pigmentation-related pathways (MAPK signaling pathway, Wnt signaling pathway, melanin production, tyrosine metabolism, and cell-cell communication process). Candidate DEGs that may be involved in body color included apolipoprotein D, crustacyanin, cytochrome P450, and tyrosinase, as verified by quantitative real-time PCR. The results of this study provide useful references to further elucidate the molecular mechanisms of color formation of M. rosenbergii and other crustaceans.

4.
Data Brief ; 54: 110441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708295

RESUMO

The Diptera insects have important ecological functions. Many plants rely on Diptera insects for pollination, and they play an important role in Co-evolution with plants. We described the detailed characteristics across the complete mitogenome sequences of Desmometopa sabroskyi Brake, 2003 (Diptera: Milichiidae) and an unidentified species of Gampsocera (Diptera: Chloropidae), which are pollinators of orchid species. Sequences were assembled and annotated using the reference genomes of Phyllomyza sp. (OP612805) and Elachiptera insignis (OP612812) available in Genbank. The complete mitogenomes of D. sabroskyi and Gampsocera sp. are 15,841 bp and 16,036 bp in length, respectively. Both mitogenomes include 37 genes consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one noncoding region (NCR). The mitogenome data would better contribute to species identification, taxonomy, phylogenetics, and evolutionary analysis of Diptera insects. .

5.
Front Pharmacol ; 15: 1373048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741591

RESUMO

Introduction: To study the effects of drug-induced CYP2D6 activity inhibition and genetic polymorphisms on fluoxetine metabolism, rat liver microsomes (RLMs) and SD rats were used to investigate the potential drug‒drug interactions (DDIs), and CYP2D6 http://muchong.com/t-10728934-1 recombinant baculosomes were prepared and subjected to catalytic reactivity studies. Methods and Results: All analytes were detected by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). After screening for 27 targeted natural products, miltirone was identified as having obvious inhibitory effect on fluoxetine metabolism in RLMs. In vivo, the concentration of fluoxetine in rat blood increased markedly after miltirone administration. The molecular docking results showed that miltirone bound more strongly to CYP2D6 than fluoxetine, and PHE120 may be the key residue leading to the inhibition of CYP2D6-mediated fluoxetine N-demethylation by miltirone. In terms of the genetic polymorphism of CYP2D6 on fluoxetine metabolism, the intrinsic clearance values of most variants were significantly altered. Among these variants, CYP2D6*92 and CYP2D6*96/Q424X were found to be catalytically inactive for fluoxetine metabolism, five variants (CYP2D6*89/L142S, *97/F457L, *R497, *V342M and *R344Q) exhibited markedly increased clearance values (>125.07%) and seven variants (CYP2D6*2, *10, *87/A5V, *93/T249P, *E215K, *R25Q and *R440C) exhibited significantly decreased clearance values (from 6.62% to 66.79%) compared to those of the wild-type. Conclusion: Our results suggest that more attention should be given to subjects in the clinic who take fluoxetine and also carry one of these infrequent CYP2D6 alleles or are coadministered drugs containing miltirone.

6.
Nat Commun ; 15(1): 4296, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769295

RESUMO

Therapeutic resistance represents a bottleneck to treatment in advanced gastric cancer (GC). Ferroptosis is an iron-dependent form of non-apoptotic cell death and is associated with anti-cancer therapeutic efficacy. Further investigations are required to clarify the underlying mechanisms. Ferroptosis-resistant GC cell lines are constructed. Dysregulated mRNAs between ferroptosis-resistant and parental cell lines are identified. The expression of SOX13/SCAF1 is manipulated in GC cell lines where relevant biological and molecular analyses are performed. Molecular docking and computational screening are performed to screen potential inhibitors of SOX13. We show that SOX13 boosts protein remodeling of electron transport chain (ETC) complexes by directly transactivating SCAF1. This leads to increased supercomplexes (SCs) assembly, mitochondrial respiration, mitochondrial energetics and chemo- and immune-resistance. Zanamivir, reverts the ferroptosis-resistant phenotype via directly targeting SOX13 and promoting TRIM25-mediated ubiquitination and degradation of SOX13. Here we show, SOX13/SCAF1 are important in ferroptosis-resistance, and targeting SOX13 with zanamivir has therapeutic potential.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos
7.
Poult Sci ; 103(7): 103814, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38718538

RESUMO

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.

8.
Protein Cell ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752989

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin disorder in which patients experience recurrent eczematous lesions and intense itching. The colonization of Staphylococcus aureus (S. aureus) is correlated with the severity of the disease, but its role in AD development remains elusive. Using single-cell RNA sequencing, we uncovered that keratinocytes activate a distinct immune response characterized by induction of Il24 when exposed to methicillin-resistant S. aureus (MRSA). Further experiments using animal models showed that the administration of recombinant IL-24 protein worsened AD-like pathology. Genetic ablation of Il24 or the receptor Il20rb in keratinocytes alleviated allergic inflammation and atopic march. Mechanistically, IL-24 acted through its heterodimeric receptors on keratinocytes and augmented the production of IL-33, which in turn aggravated type 2 immunity and AD-like skin conditions. Overall, these findings establish IL-24 as a critical factor for onset and progression of AD and a compelling therapeutic target.

9.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

10.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587399

RESUMO

Catheter-related infection (CRI) is a common nosocomial infection caused by candida albicans during catheter implantation. Typically, biofilms are formed on the outer surface of the catheter and lead to disseminated infections, which are fatal to patients. There are no effective prevention and treatment management in clinics. Therefore, it is urgent to establish an animal model of CRI for the preclinical screening of new strategies for its prevention and treatment. In this study, a polyethylene catheter, a widely used medical catheter, was inserted into the back of the BALB/c mice after hair removal. Candida albicans ATCC MYA-2876 (SC5314) expressing enhanced green fluorescent protein was subsequently inoculated on the skin's surface along the catheter. Intense fluorescence was observed on the surface of the catheter under a fluorescent microscope 3 days later. Mature and thick biofilms were found on the surface of the catheter via scanning electron microscopy. These results indicated the adhesion, colonization, and biofilm formation of candida albicans on the surface of the catheter. The hyperplasia of the epidermis and the infiltration of inflammatory cells in the skin specimens indicated the histopathological changes of the CRI-associated skin. To sum up, a mouse CRI model was successfully established. This model is expected to be helpful in the research and development of therapeutic management for candida albicans associated CRI.


Assuntos
Candida albicans , Infecções Relacionadas a Cateter , Humanos , Camundongos , Animais , Catéteres , Modelos Animais de Doenças , Biofilmes , Antifúngicos
11.
Oncogene ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654108

RESUMO

Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.

12.
Lipids Health Dis ; 23(1): 103, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615017

RESUMO

BACKGROUND: Previous studies have demonstrated the relationship between adipocyte factors, insulin resistance, and other indicators with telomere length. However, these studies did not consider the influence of changes in different indicators on telomere length over time. Therefore, the aim of this study is to elucidate the impact of changes in adipocyte factors, HOMA-IR, and other indicators on the dynamic variation of telomere length. METHODS: The data were from a cohort study conducted in Ningxia, China. A total of 1624 subjects were analyzed. Adipokines and relative leukocyte telomere length (RLTL) were measured, and changes in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), Homeostatic Model Assessment for ß-Cell Function (HOMA-ß), and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Generalized linear models evaluated associations between changes in adipokines and RLTL changes. Furthermore, univariate analyses examined the effects of changes in adipokines and insulin resistance indicators on ΔRLTL. RESULTS: The research findings indicate that females generally have shorter telomeres compared to males. In comparison to the low-level group of Δleptin (LEP), the high-level group of ΔLEP shows a negative correlation with ΔRLTL (B=-1.32, 95% CI (-2.38, -0.27)). Even after multivariable adjustments, this relationship persists (B=-1.31, 95% CI (-2.24, -0.23)). Further analysis reveals that after adjusting for ΔHOMA-IR, ΔHOMA-ß, and ΔQUICKI, the high-level group of ΔLEP still exhibits a significant negative correlation with ΔRLTL (B=-1.37, 95% CI (-2.43, -0.31)). However, the interaction effects between ΔHOMA-IR, ΔHOMA-ß, ΔQUICKI, and ΔLEP do not affect ΔRLTL. CONCLUSIONS: Elevated levels of leptin were significantly correlated with shortened telomere length. This suggests that increased leptin levels may impact overall individual health by affecting telomere length, underscoring the importance of measures to reduce leptin levels to mitigate the onset and progression of related diseases.


Assuntos
Resistência à Insulina , Leptina , Feminino , Masculino , Humanos , Leptina/genética , Estudos de Coortes , Resistência à Insulina/genética , População Rural , Encurtamento do Telômero , Telômero/genética , Adipocinas , China , Leucócitos
13.
Front Microbiol ; 15: 1367084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666259

RESUMO

Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.

14.
Stem Cell Res Ther ; 15(1): 122, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679727

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) hold a great promise for cell-based therapy in the field of regenerative medicine. In this study, we aimed to evaluate the safety and efficacy of intravenous infusion of human umbilical cord-derived MSCs (HUC-MSCs) in patients with aging frailty. METHODS: In this randomized, double-blind, placebo-controlled trial, participants diagnosed with aging frailty were randomly assigned to receive intravenous administrations of HUC-MSCs or placebo. All of serious adverse events and AEs were monitored to evaluate the safety of treatment during the 6-month follow-up. The primary efficacy endpoint was alteration of physical component scores (PCS) of SF-36 qualities of life at 6 months. The secondary outcomes including physical performance tests and pro-inflammatory cytokines, were also observed and compared at each follow-up visits. All evaluations were performed at 1 week, 1, 2, 3 and 6 months following the first intravenous infusion of HUC-MSCs. RESULTS: In the MSCs group, significant improvements in PCS of SF-36 were observed from first post-treatment visit and sustained throughout the follow-up period, with greater changes compared to the placebo group (p = 0.042). EQ-VAS scores of MSCs group improved significantly at 2 month (p = 0.023) and continued until the end of the 6-month visit (p = 0.002) in comparison to the placebo group. The timed up and go (TUG) physical performance test revealed significant group difference and showed continual enhancements over 6 months (p < 0.05). MSC transplantation improved the function of 4-m walking test (4MWT) compared with the placebo group with a decrease of 2.05 s at 6 months of follow-up (p = 0.21). The measurement of grip strength revealed group difference with MSCs group demonstrating better performance, particularly at 6 months (p = 0.002). Inflammatory cytokines (TNF-α, IL-17) exhibited declines in MSCs group at 6 months compared to the placebo group (p = 0.034 and 0.033, respectively). There was no difference of incidence of AEs between the two groups. CONCLUSION: Intravenous transplantation of HUC-MSCs is a safe and effective therapeutic approach on aging frailty. The positive outcomes observed in improving quality of life, physical performance, and reducing chronic inflammation, suggest that HUC-MSC therapy may be a promising potential treatment option for aging frailty. TRIAL REGISTRATION: Clinicaltrial.gov; NCT04314011; https://clinicaltrials.gov/ct2/show/NCT04314011 .


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Qualidade de Vida , Cordão Umbilical , Humanos , Feminino , Masculino , Método Duplo-Cego , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Idoso , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Fragilidade/terapia , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Resultado do Tratamento
15.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605605

RESUMO

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Assuntos
Envelhecimento , Disfunção Cognitiva , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Disfunção Cognitiva/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Camundongos , Humanos , Envelhecimento/fisiologia , Masculino , Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptor trkB/metabolismo , Leucócitos Mononucleares/metabolismo , Idoso , Feminino , Camundongos Endogâmicos C57BL
16.
Front Oncol ; 14: 1265228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680859

RESUMO

Objective: Major pathological response (MPR) helps evaluate the prognosis of patients with lung squamous cell carcinoma (LUSC). However, the clinical factors that affect the achievement of MPR after neoadjuvant chemoimmunotherapy (NCIO) in patients with LUSC remain unclear. This study aimed to explore the clinical factors affecting the MPR after NCIO in patients with potentially resectable LUSC. Methods: This retrospective study included patients with stage IIB-IIIC LUSC who underwent surgical resection after receiving NCIO at a center between March 2020 and November 2022. In addition to the postoperative pathological remission rate, sex, age, body mass index (BMI), smoking history, TNM stage, hematological and imaging test results, and other indicators were examined before NCIO. According to the pathological response rate of the surgically removed tumor tissue, the patients were split into MPR and non-MPR groups. Results: In total, 91 LUSC patients who met the study's eligibility criteria were enrolled: 32 (35%) patients in the non-MPR group and 59 (65%) in the MPR group, which included 43 cases of pathological complete remission (pCR). Pre-treatment lymphocyte level (LY) (odds ratio [OR] =5.997), tumor burden (OR=0.958), N classification (OR=15.915), radiographic response (OR=11.590), pulmonary atelectasis (OR=5.413), and PD-L1 expression (OR=1.028) were independently associated with MPR (all P < 0.05). Based on these six independent predictors, we developed a nomogram model of prediction having an area under the curve (AUC) of 0.914 that is simple to apply clinically to predict the MPR. The MPR group showed greater disease-free survival (DFS) than the non-MPR group, according to the survival analysis (P < 0.001). Conclusion: The MPR rate of NCIO for potentially resectable LUSC was 65%. LY, tumor burden, N classification, radiographic response, pulmonary atelectasis, and PD-L1 expression in patients with LUSC before NCIO were the independent and ideal predictors of MPR. The developed nomogram demonstrated a good degree of accuracy and resilience in predicting the MPR following NCIO, indicating that it is a useful tool for assuring customized therapy for patients with possibly resectable LUSC.

17.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38648728

RESUMO

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo , Bibliotecas de Moléculas Pequenas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Estrutura Molecular
18.
Front Cell Dev Biol ; 12: 1370287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434618

RESUMO

Parkinson's Disease (PD) is characterized by the temporary alleviation of motor symptoms following electrode implantation (or nucleus destruction), known as the microlesion effect (MLE). Electrophysiological studies have explored different PD stages, but understanding electrophysiological characteristics during the MLE period remains unclear. The objective was to examine the characteristics of local field potential (LFP) signals in the subthalamic nucleus (STN) during the hyperacute period following implantation (within 2 days) and 1 month post-implantation. 15 patients diagnosed with PD were enrolled in this observational study, with seven simultaneous recordings of bilateral STN-LFP signals using wireless sensing technology from an implantable pulse generator. Recordings were made in both on and off medication states over 1 month after implantation. We used a method to parameterize the neuronal power spectrum to separate periodic oscillatory and aperiodic components effectively. Our results showed that beta power exhibited a significant increase in the off medication state 1 month after implantation, compared to the postoperative hyperacute period. Notably, this elevation was effectively attenuated by levodopa administration. Furthermore, both the exponents and offsets displayed a decrease at 1 month postoperatively when compared to the hyperacute postoperative period. Remarkably, levodopa medication exerted a modulatory effect on these aperiodic parameters, restoring them back to levels observed during the hyperacute period. Our findings suggest that both periodic and aperiodic components partially capture distinct electrophysiological characteristics during the MLE. It is crucial to adequately evaluate such discrepancies when exploring the mechanisms of MLE and optimizing adaptive stimulus protocols.

19.
Psychol Rep ; 127(2): 786-806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462852

RESUMO

Reactive aggression is an aggressive response to a perceived threat or provocation. It has detrimental effects on individuals and society. Rejection sensitivity, a disposition that one tends to anxiously expect, readily perceive, and intensely react to social rejection, has been associated with reactive aggression. Considering that the mechanism underlying this link remains unclear, this study explores the mediating role of loneliness and maladaptive coping. Participants included 1104 early adults between the ages of 17-23 (Mage = 20.35, SD = 1.11, 33.6% men) in China who completed the Chinese version of the Tendency to Expect Rejection Scale, Loneliness Scale, Ways of Coping Questionnaire, and Reactive-Active Aggression Questionnaire. The serial mediation model revealed that loneliness and maladaptive coping independently mediated the association of rejection sensitivity with reactive aggression. More importantly, the chain mediating effect of "loneliness-maladaptive coping" also accounted for this link. The above findings contribute to a deeper understanding of the relationships among these factors and suggested that rejection sensitivity could positively be related to reactive aggression through loneliness and maladaptive coping.


Assuntos
Agressão , Solidão , Testes Psicológicos , Autorrelato , Masculino , Adulto , Humanos , Adolescente , Adulto Jovem , Feminino , Capacidades de Enfrentamento , Personalidade
20.
Cell Discov ; 10(1): 26, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443370

RESUMO

Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA