RESUMO
There is extensive geologic evidence of ancient volcanic activity on the Moon, but it is unclear how long that volcanism persisted. Magma fountains produce volcanic glasses, which have previously been found in samples of the Moon's surface. We investigated ~3000 glass beads in lunar soil samples collected by the Chang'e-5 mission and identified three as having a volcanic origin on the basis of their textures, chemical compositions, and sulfur isotopes. Uranium-lead dating of the three volcanic glass beads shows that they formed 123 ± 15 million years ago. We measured high abundances of rare earth elements and thorium in these volcanic glass beads, which could indicate that such recent volcanism was related to local enrichment of heat-generating elements in the mantle sources of the magma.
RESUMO
BACKGROUND: 5-10% of thyroid cancers are at locally advanced stage. Neoadjuvant targeted therapy will likely create surgical opportunities for these patients with unresectable or borderline resectable tumors. Pralsetinib, a RET inhibitor, has been approved for advanced or metastatic RET-altered thyroid cancer. However, there is no evidence on the efficacy of pralsetinib as neoadjuvant therapy in locally advanced RET-altered thyroid cancer. CASE REPORT: Two patients with locally advanced pappilary thyroid carcinoma (PTC) were treated with pralsetinib (400 mg daily) to reduce tumor size and increase the chance of R0 resection. Both PTCs, characterized by RET-fusion, underwent successful R0 resection without major surgical complications after 4-months neoadjuvant pralsetinib. CONCLUSION: There is a potential for pralsetinib as a neoadjuvant treatment in PTC with RET-fusion.
RESUMO
Soil salinization has been considered as a major environmental threat to plant growth. Different types of salt in saline soil have different effects on germination and seedling growth. Effect of NaCl on germination and seedling establishment in Suaeda liaotungensis have been reported, but its response to alkali stress remains unclear. Our results showed that brown seeds had higher germination rate, however, black seeds had higher germination recovery percentage under alkali stress. Na2CO3 had stronger inhibitory effect on germination and seedling growth than NaHCO3. As the concentration of alkali stress increased, the ROS level of brown seeds gradually ascended, while that of black seeds decreased first and then ascended. MDA content of dimorphic seeds significantly increased under alkali stress. The trend of SOD, POD and CAT activity between dimorphic seeds was similar under the same type of alkali stress. Alkali stress enhanced proline content of dimorphic seeds, and dimorphic seeds in NaHCO3 solution had higher proline content than Na2CO3 solution. Moreover, radicle and shoot tolerance indexes of seedlings in NaHCO3 solution were significantly higher than that of Na2CO3 solution. Under strong alkali stress, seedlings in NaHCO3 solution had significantly lower ROS level and MDA content as well as higher antioxidant enzyme activity than Na2CO3 solution. This study comprehensively compared the morphological and physiological characteristics in germination and seedlings to better reveal the saline-alkali tolerance mechanisms in S. liaotungensis.
Assuntos
Álcalis , Chenopodiaceae , Germinação , Plantas Tolerantes a Sal , Plântula , Sementes , Estresse Fisiológico , Germinação/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plantas Tolerantes a Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/fisiologia , Chenopodiaceae/fisiologia , Chenopodiaceae/efeitos dos fármacos , Chenopodiaceae/crescimento & desenvolvimento , Bicarbonato de Sódio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Malondialdeído/metabolismo , CarbonatosRESUMO
Deep carbon cycle is crucial for mantle dynamics and maintaining Earth's habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate.
RESUMO
Suaeda glauca Bunge produces dimorphic seeds on the same plant, with brown seeds displaying non-dormant characteristics and black seeds exhibiting intermediate physiological dormancy traits. Previous studies have shown that black seeds have a very low germination rate under natural conditions, but exogenous GA3 effectively enhanced the germination rate of black seeds. However, the physiological and molecular mechanisms underlying the effects of GA3 on S. glauca black seeds are still unclear. In this study, transcriptomic profiles of seeds at different germination stages with and without GA3 treatment were analyzed and compared, and the TTF, H2O2, O2 -, starch, and soluble sugar contents of the corresponding seed samples were determined. The results indicated that exogenous GA3 treatment significantly increased seed vigor, H2O2, and O2 - contents but decreased starch and soluble sugar contents of S. glauca black seeds during seed dormancy release. RNA-seq results showed that a total of 1136 DEGs were identified in three comparison groups and were involved mainly in plant hormone signal transduction, diterpenoid biosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, and carbohydrate metabolism pathway. Among them, the DEGs related to diterpenoid biosynthesis (SgGA3ox1, SgKAO and SgGA2ox8) and ABA signal transduction (SgPP2Cs) could play important roles during seed dormancy release. Most genes involved in phenylpropanoid biosynthesis were activated under GA3 treatment conditions, especially many SgPER genes encoding peroxidase. In addition, exogenous GA3 treatment also significantly enhanced the expression of genes involved in flavonoid synthesis, which might be beneficial to seed dormancy release. In accordance with the decline in starch and soluble sugar contents, 15 genes involved in carbohydrate metabolism were significantly up-regulated during GA3-induced dormancy release, such as SgBAM, SgHXK2, and SgAGLU, etc. In a word, exogenous GA3 effectively increased the germination rate and seed vigor of S. glauca black seeds by mediating the metabolic process or signal transduction of plant hormones, phenylpropanoid and flavonoid biosynthesis, and carbohydrate metabolism processes. Our results provide novel insights into the transcriptional regulation mechanism of exogenous GA3 on the dormancy release of S. glauca black seeds. The candidate genes identified in this study may be further studied and used to enrich our knowledge of seed dormancy and germination.
RESUMO
Localized magnetic moments in non-magnetic materials, by interacting with the itinerary electrons, can profoundly change the metallic properties, developing various correlated phenomena such as the Kondo effect, heavy fermion, and unconventional superconductivity. In most Kondo systems, the localized moments are introduced through magnetic impurities. However, the intrinsic magnetic properties of materials can also be modulated by the dimensionality. Here, we report the observation of Kondo effect in a heterodimensional superlattice VS2-VS, in which arrays of the one-dimensional (1D) VS chains are encapsulated by two-dimensional VS2 layers. In such a heterodimensional Kondo superlattice, we observe the typical Kondo effect but with intriguing anisotropic field dependence. This unique anisotropy is determined to originate from the magnetic anisotropy which has the root in the unique 1D chains in the structure, as corroborated by the first-principles calculation. Our results open up a novel avenue of studying exotic correlated physics in heterodimensional materials.
RESUMO
A "once-in-a-millennium" super rainstorm battered Zhengzhou, central China, from 07/17/2021 to 07/22/2021 (named "7.20" Zhengzhou rainstorm). It killed 398 people and caused billions of dollars in damage. A pressing question is whether rainstorms of this intensity can be effectively documented by geological archives to understand better their historical variabilities beyond the range of meteorological data. Here, four land snail shells were collected from Zhengzhou, and weekly to daily resolved snail shell δ18O records from June to September of 2021 were obtained by gas-source mass spectrometry and secondary ion mass spectrometry. The daily resolved records show a dramatic negative shift between 06/18/2021 and 09/18/2021, which has been attributed to the "7.20" Zhengzhou rainstorm. Moreover, the measured amplitude of this shift is consistent with the theoretical value estimated from the flux balance model and instrumental data for the "7.20" Zhengzhou rainstorm. Our results suggest that the ultra-high resolution δ18O of land snail shells have the potential to reconstruct local synoptic scale rainstorms quantitatively, and thus fossil snail shells in sedimentary strata can be valuable material for investigating the historical variability of local rainstorms under different climate backgrounds.
Assuntos
Exoesqueleto , Isótopos de Oxigênio , Caramujos , Caramujos/química , Animais , China , Exoesqueleto/química , Isótopos de Oxigênio/análise , Chuva , FósseisRESUMO
The programmed death-ligand 1 (PD-L1) is a key mediator of immunosuppression in the tumor microenvironment. The expression of PD-L1 in cancer cells is useful for the clinical determination of an immune checkpoint blockade (ICB). However, the regulatory mechanism of the PD-L1 abundance remains incompletely understood. Here, we integrated the proteomics of 52 patients with solid tumors and examined immune cell infiltration to reveal PD-L1-related regulatory modules. Wiskott-Aldrich syndrome protein (WASP) was identified as a potential regulator of PD-L1 transcription. In two independent cohorts containing 164 cancer patients, WASP expression was significantly associated with PD-L1. High WASP expression contributed to immunosuppressive cell composition, including cells positive for immune checkpoints (PD1, CTLA4, TIGIT, and TIM3), FoxP3+ Treg cells, and CD163+ tumor-associated macrophages. Overexpression of WASP increased, whereas knockdown of WASP decreased the protein level of PD-L1 in cancer cells without alteration of PD-L1 protein stability. The WASP-mediated cell migration and invasion were markedly attenuated by the silence of PD-L1. Collectively, our data suggest that WASP is a potential regulator of PD-L1 and the WASP/PD-L1 axis is responsible for cell migration and an immunosuppressive microenvironment.
Assuntos
Antígeno B7-H1 , Neoplasias , Proteômica , Microambiente Tumoral , Proteína da Síndrome de Wiskott-Aldrich , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteômica/métodos , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética , Neoplasias/metabolismo , Neoplasias/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular TumoralRESUMO
The reorientation of Earth through rotation of its solid shell relative to its spin axis is known as True polar wander (TPW). It is well-documented at present, but the occurrence of TPW in the geologic past remains controversial. This is especially so for Late Jurassic TPW, where the veracity and dynamics of a particularly large shift remain debated. Here, we report three palaeomagnetic poles at 153, 147, and 141 million years (Myr) ago from the North China craton that document an ~ 12° southward shift in palaeolatitude from 155-147 Myr ago (~1.5° Myr-1), immediately followed by an ~ 10° northward displacement between 147-141 Myr ago (~1.6° Myr-1). Our data support a large round-trip TPW oscillation in the past 200 Myr and we suggest that the shifting back-and-forth of the continents may contribute to the biota evolution in East Asia and the global Jurassic-Cretaceous extinction and endemism.
RESUMO
Sulfate reduction is an essential metabolism that maintains biogeochemical cycles in marine and terrestrial ecosystems. Sulfate reducers are exclusively prokaryotic, phylogenetically diverse, and may have evolved early in Earth's history. However, their origin is elusive and unequivocal fossils are lacking. Here we report a new microfossil, Qingjiangonema cambria, from â¼518-million-year-old black shales that yield the Qingjiang biota. Qingjiangonema is a long filamentous form comprising hundreds of cells filled by equimorphic and equidimensional pyrite microcrystals with a light sulfur isotope composition. Multiple lines of evidence indicate Qingjiangonema was a sulfate-reducing bacterium that exhibits similar patterns of cell organization to filamentous forms within the phylum Desulfobacterota, including the sulfate-reducing Desulfonema and sulfide-oxidizing cable bacteria. Phylogenomic analyses confirm separate, independent origins of multicellularity in Desulfonema and in cable bacteria. Molecular clock analyses infer that the Desulfobacterota, which encompass a majority of sulfate-reducing taxa, diverged â¼2.41 billion years ago during the Paleoproterozoic Great Oxygenation Event, while cable bacteria diverged â¼0.56 billion years ago during or immediately after the Neoproterozoic Oxygenation Event. Taken together, we interpret Qingjiangonema as a multicellular sulfate-reducing microfossil and propose that cable bacteria evolved from a multicellular filamentous sulfate-reducing ancestor. We infer that the diversification of the Desulfobacterota and the origin of cable bacteria may have been responses to oxygenation events in Earth's history.
Assuntos
Fósseis , Filogenia , Sulfatos , Sulfatos/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Oxirredução , Planeta Terra , Evolução Biológica , Oxigênio/metabolismo , Sedimentos Geológicos/microbiologia , Sulfetos/metabolismo , China , FerroRESUMO
OBJECTIVE: To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity, and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer. METHODS: TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected from the University of California Santa Cruz database. Survival analyses were performed to explore the relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman's and Wilcoxon's tests were used to investigate the relationships between S100A7 expression and immune characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-quantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay. RESULTS: S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7 was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further, S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and chemotherapy resistance of breast cancer cells in vitro experiments. CONCLUSION: High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast cancer, making it a potential immune and chemotherapy resistance biomarker.
Assuntos
Neoplasias Mamárias Animais , Animais , Adjuvantes Imunológicos , Bioensaio , Metilação , Processamento de Proteína Pós-Traducional , HumanosRESUMO
Global warming has caused the degradation of coral reefs around the world. While stress-tolerant corals have demonstrated the ability to acclimatize to ocean warming, it remains unclear whether they can sustain their thermal resilience when superimposed with other coastal environmental stressors. We report the combined impacts of a photosystem II (PSII) herbicide, prometryn, and ocean warming on the stress-tolerant coral Galaxea fascicularis through physiological and omics analyses. The results demonstrate that the heat-stress-induced inhibition of photosynthetic efficiency in G. fascicularis is exacerbated in the presence of prometryn. Transcriptomics and metabolomics analyses indicate that the prometryn exposure may overwhelm the photosystem repair mechanism in stress-tolerant corals, thereby compromising their capacity for thermal acclimation. Moreover, prometryn might amplify the adverse effects of heat stress on key energy and nutrient metabolism pathways and induce a stronger response to oxidative stress in stress-tolerant corals. The findings indicate that the presence of prometryn at environmentally relevant concentrations would render corals more susceptible to heat stress and exacerbate the breakdown of coral Symbiodiniaceae symbiosis. The present study provides valuable insights into the necessity of prioritizing PSII herbicide pollution reduction in coral reef protection efforts while mitigating the effects of climate change.
Assuntos
Antozoários , Herbicidas , Animais , Antozoários/fisiologia , Prometrina , Recifes de Corais , Oceanos e Mares , SimbioseRESUMO
Head and neck squamous cell carcinoma (HNSCC) is one of the most lethal diseases in the world, which often recur after multimodality treatment approaches, leading to a poor prognosis. Fibroblasts, a heterogeneous component of the tumor microenvironment, can modulate numerous aspects of tumor biology and have been increasingly acknowledged in dictating the clinical outcome of patients with HNSCC. However, the subpopulation of fibroblasts that are related to the prognosis of HNSCC has not yet been fully explored. To do so, we combined a single-cell RNA sequencing (scRNA-seq) dataset and bulk RNA-sequencing dataset with clinical information, identifying the fibroblast population that are related to poor prognosis of HNSCC. We found these specific population of fibroblasts are less differentiated. In addition, to identify the prognostic signatures of HNSCC, bioinformatics analysis included least absolute shrinkage and selection operator (LASSO) analyses and univariate cox and were performed. We selected 12 prognosis-related genes for constructing a risk model using The Cancer Genome Atlas (TCGA). The AUC values and calibration plots of this model indicated good prognostic prediction efficacy. This model also was validated in two Gene Expression Omnibus (GEO) datasets. In conclusion, we constructed an optimal model that was derived from single cell RNA-seq and bulk RNA-seq to predict the survival probability of HNSCC patients. Among this model, AKR1C3 higher expression in cancer associated fibroblasts (CAFs) of HNSCC has been confirmed by preliminary experiments.
Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Análise de Sequência de RNA , Neoplasias de Cabeça e Pescoço/genética , Microambiente Tumoral/genéticaRESUMO
Light yellowish-white colonies of a bacterial strain, designated LNNU 24178T, were isolated from the rhizosphere soil of halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze grown at Shihezi district, Xinjiang, PR China. Cells were Gram-stain-negative, non-flagellum-forming, rod-shaped and non-motile. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated that LNNU 24178T represented a member of the genus Luteimonas and shared the highest sequence similarity with Luteimonas yindakuii CGMCC 1.13927T (97.1â%) and lower sequence similarity (< 97.0â%) to other known species. The genomic DNA G+C content of LNNU 24178T was 68.8â%. The average nucleotide identity (ANI) values between LNNU 24178T and Luteimonas yindakuii CGMCC 1.13927T, Luteimonas mephitis DSM 12574T, Luteimonas arsenica 26-35T and Luteimonas huabeiensis HB2T were 78.7, 78.6, 78.4 and 80.0â%, respectively. The digital DNA-DNA hybridisation (dDDH) values between LNNU 24178T and L. yindakuii CGMCC 1.13927T, L. mephitis DSM 12574T, L. arsenica 26-35T and L. huabeiensis HB2T were 22.0, 22.3, 22.2 and 23.5â%, respectively. The respiratory quinone detected in LNNU 24178T was ubiquinone-8 (Q-8). The major fatty acids (> 5.0â%) of LNNU 24178T were identified as iso-C15â:â0 (33.9â%), iso-C17â:â0 (8.7â%), iso-C11â:â0 (6.2â%), iso-C16â:â0 (5.7â%), C16â:â0 (5.3â%) and summed feature 9 (iso-C17â:â1ω9c/10-methyl C16â:â0) (21.1â%). The major polar lipids of LNNU 24178T were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), one unidentified phospholipid (PL), one unidentified glycolipid (GL) and three unidentified lipids. According to the data obtained from phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 24178T represents a novel species of the genus Luteimonas, for which the name Luteimonas suaedae sp. nov. is proposed, with LNNU 24178T (= CGMCC 1.17331T= KCTC 62251T) as the type strain.
Assuntos
Ácidos Graxos , Rizosfera , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , FosfolipídeosRESUMO
Background: The 2015 American Thyroid Association guidelines proposed recurrence risk stratification of differentiated thyroid carcinoma, including papillary thyroid carcinoma (PTC), but this stratification excluded non-initial treatment patients with worse outcomes. This study aimed to explore the potential risk factors for recurrence in PTC and develop a predictive model for both initial and non-initial treatment of patients with PTC. Methods: A total of 955 patients were included in this study. Differences between the recurrence (-) and recurrence (+) groups were compared. The 955 patients were randomized into two groups: the training group (671 cases) and the validation group (284 cases). All variables were selected using the LASSO regression analysis. A nomogram was developed based on the results of the univariate and multivariate logistic regression analyses. The nomogram performance was evaluated using discrimination and calibration. Results: Patients aged ≥55 years, extranodal extension (ENE), metastatic LN ratio (LNR) >0.5, and non-initial treatment were identified as potential risk factors for recurrence through LASSO regression and univariate and multivariate analyses. The receiver operating characteristic curve (ROC curve) showed high efficiency, with an area under the ROC curve (AUC) of 0.819 (95% confidence interval [CI], 0.729-0.909) and 0.818 (95% CI, 0.670-0.909) in the training and validation groups, respectively. The calibration curve indicated that the nomogram had a good consistency. Conclusion: In patients with PTC, age ≥55 years, ENE, LNR >0.5, and non-initial treatment are potential risk factors for recurrence. The predictive model of recurrence was confirmed to be a practical and convenient tool for clinicians to accurately predict PTC recurrence.
Assuntos
Linfonodos , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/terapia , Câncer Papilífero da Tireoide/patologia , Estudos Retrospectivos , Linfonodos/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/terapia , Fatores de RiscoRESUMO
Nitrogen pollution and pesticides such as photosystem II (PSII) inhibitor herbicides have several detrimental impacts on coral reefs, including breakdown of the symbiosis between host corals and photosynthetic symbionts. Although nitrogen and PSII herbicide pollution separately cause coral bleaching, the combined effects of these stressors at environmentally relevant concentrations on corals have not been assessed. Here, we report the combined effects of nitrate enrichment and PSII herbicide (prometryn) exposure on photosynthesis, oxidative status and endosymbiont community diversity of the reef-building coral Acropora hyacinthus. Coral fragments were exposed in a mesocosm system to nitrate enrichment (9 µmol/L) and two prometryn concentrations (1 and 5 µg/L). The results showed that sustained prometryn exposure in combination with nitrate enrichment stress had significant detrimental impacts on photosynthetic apparatus [the maximum quantum efficiency of photosystem II (Fv/Fm), nonphotochemical quenching (NPQ) and oxidative status in the short term. Nevertheless, the adaptive mechanism of corals allowed the normal physiological state to be recovered following 1 µg/L prometryn and 9 µmol/L nitrate enrichment individual exposure. Moreover, exposure for 9 days was insufficient to trigger a shift in Symbiodiniaceae community. Most importantly, the negative impact of exposure to the combined environmental concentrations of 1 µg/L prometryn and 9 µmol/L nitrate enrichment was found to be significantly greater on the Fv/Fm, quantum yield of non-regulated energy dissipation [Y(NO)], NPQ, and oxidative status of corals compared to the impact of individual stressors. Our results show that interactions between prometryn stress and nitrate enrichment have a synergistic impact on the photosynthetic and oxidative stress responses of corals. This study provides valuable insights into combined effects of nitrate enrichment and PSII herbicides pollution for coral's physiology. Environmental concentrations of PSII herbicides may be more harmful to photosystems and antioxidant systems of corals under nitrate enrichment stress. Thus, future research and management of seawater quality stressors should consider combined impacts on corals rather than just the impacts of individual stressors alone.
Assuntos
Antozoários , Herbicidas , Hyacinthus , Animais , Prometrina , Nitratos/farmacologia , Herbicidas/toxicidade , Complexo de Proteína do Fotossistema II , Recifes de Corais , Fotossíntese , Estresse Oxidativo , SimbioseRESUMO
The NAC (NAM, ATAF1/2 and CUC2) transcription factors are ubiquitously distributed in plants and play critical roles in the construction of plant organs and abiotic stress response. In this study, we described the cloning of a Suaeda liaotungensis K. NAC transcription factor gene SlNAC4, which contained 1450 bp, coding a 331 amino acid. We found that SlNAC4 was highly expressed in stems of S. liaotungensis, and the expression of SlNAC4 was considerably up-regulated after salt, drought, and ABA treatments. Transcription analysis and subcellular localization demonstrated that the SlNAC4 protein was located both in the nucleus and cytoplasm, and contained a C-terminal transcriptional activator. The SlNAC4 overexpression Arabidopsis lines significantly enhanced the tolerance to salt and drought treatment and displayed obviously increased activity of antioxidant enzymes under salt and drought stress. Additionally, transgenic plants overexpressing SlNAC4 had a significantly higher level of physiological indices. Interestingly, SlNAC4 promoted the expression of ABA metabolism-related genes including AtABA1, AtABA3, AtNCED3, AtAAO3, but inhibited the expression of AtCYP707A3 in overexpression lines. Using a yeast one-hybrid (Y1H) assay, we identified that the SlNAC4 transcription factor could bind to the promoters of those ABA metabolism-related genes. These results indicate that overexpression of SlNAC4 in plants enhances the tolerance to salt and drought stress by regulating ABA metabolism.
RESUMO
Identifying the oldest evidence for the recycling of hydrated crust into magma on Earth is important because it is most effectively achieved by subduction. However, given the sparse geological record of early Earth, the timing of first supracrustal recycling is controversial. Silicon and oxygen isotopes have been used as indicators of crustal evolution on Archean igneous rocks and minerals to trace supracrustal recycling but with variable results. We present Si-O isotopes of Earth's oldest rocks [4.0 billion years ago (Ga)] from the Acasta Gneiss Complex, northwest Canada, obtained using multiple techniques applied to zircon, quartz, and whole rock samples. Undisturbed zircon is considered the most reliable recorder of primary Si signatures. By combining reliable Si isotope data from the Acasta samples with filtered data from Archean rocks globally, we observe that widespread evidence for a heavy Si signature is recorded since 3.8 Ga, marking the earliest record of surface silicon recycling.
Assuntos
Planeta Terra , Silício , Isótopos de Oxigênio , CanadáRESUMO
OBJECTIVES: To reveal the effect and mechanism of methyltransferase-like 3 (METTL3) on cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: First, we analyzed 14-HNSCC-patients' scRNA-seq dataset and TCGA dataset of HNSCC. Then, Mettl3 knockout or overexpression mice models were studied via tracing and staining technologies. In addition, we took flow cytometry sorting and sphere formation assays to observe tumorigenicity and used cell transfection and western blotting to verify target protein expression levels. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative real-time PCR (MeRIP-qPCR) were taken to identify the mechanism of Mettl3 regulating Bmi1+ CSCs in HNSCC. RESULTS: Due to SOX4 transcriptional regulation, METTL3 regulated the malignant behavior of BMI1+ HNSCC stem cells through cell division pathway. The progression and malignancy of HNSCC were decreased after Mettl3 knocked-out, while increased after Mettl3 knocked-in in Bmi1+ CSCs in vivo. Knockdown of Mettl3 inhibited stemness properties of CSCs in vitro. Mechanically, Mettl3 mediated the m6 A modification of ALDH1A3 and ALDH7A1 mRNA in Bmi1+ HNSCC CSCs. CONCLUSION: Regulated by SOX4, METTL3-mediated ALDH m6 A methylation regulates the malignant behavior of BMI1+ HNSCC CSCs through cell division pathway.