Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566267

RESUMO

Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.


Assuntos
Oryza , Oryza/fisiologia , Perfilação da Expressão Gênica , Estresse Salino , Plântula/fisiologia , Tolerância ao Sal/genética
2.
Front Microbiol ; 14: 1233559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520366

RESUMO

Introduction: The development of highly effective wound dressings is crucial for successful clinical applications. Achieving wound closure, preventing infection, and minimizing scarring are key objectives in wound healing. Drawing inspiration from the regenerative mechanisms observed in embryonic tissue repair, we designed a series of wound-contractible dressings with exceptional antibacterial properties. Methods: This was achieved by encapsulating quaternized silicone (QP12) and poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide-co-octadecyl acrylate) (PNNS) within electrospun nanofibers of poly(ε-caprolactone) (PCL). Results and discussion: The resulting nanofibrous dressings demonstrated remarkable thermo-responsive self-contraction and tissue adhesion capabilities, enabling secure adherence to the skin and active wound closure. Notably, these nanofibers exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Furthermore, they possessed desirable properties such as hydrophilicity, biocompatibility and mechanical properties resembling human skin. A full-thickness skin defect model evaluation revealed that these temperature-sensitive nanofibers expedited wound closure, enhanced wound healing, and suppressed scar formation. This result was evidenced by reduced infiltration of inflammatory cells, well-organized collagen arrangement, and improved vascularization. In summary, we propose that these wound-contractible nanofibers, with their antibacterial and anti-scarring properties, hold great promise as an advanced solution for skin wound repair.

3.
Polymers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987247

RESUMO

The development of hydrogels as wound dressings has gained considerable attention due to their promising ability to promote wound healing. However, in many cases of clinical relevance, repeated bacterial infection, which might obstruct wound healing, usually occurs due to the lack of antibacterial properties of these hydrogels. In this study, we fabricated a new class of self-healing hydrogel with enhanced antibacterial properties based on dodecyl quaternary ammonium salt (Q12)-modified carboxymethyl chitosan (Q12-CMC), aldehyde group- modified sodium alginate (ASA), Fe3+ via Schiff bases and coordination bonds (QAF hydrogels). The dynamic Schiff bases and coordination interactions conferred excellent self-healing abilities to the hydrogels, while the incorporation of dodecyl quaternary ammonium salt gave the hydrogels superior antibacterial properties. Additionally, the hydrogels displayed ideal hemocompatibility and cytocompatibility, crucial for wound healing. Our full-thickness skin wound studies demonstrated that QAF hydrogels could result in rapid wound healing with reduced inflammatory response, increased collagen disposition and improved vascularization. We anticipate that the proposed hydrogels, possessing both antibacterial and self-healing properties, will emerge as a highly desirable material for skin wound repair.

4.
Colloids Surf B Biointerfaces ; 224: 113209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842393

RESUMO

Uncontrolled bleeding and bacterial infections cause severe damage to the wounds and remain a clinical challenge. Here, we developed a nanofiber/sponge bilayered composite membrane (QCP) containing quaternized silicone (QP12) and quaternized chitosan (QCS12) by joint approaches of electrospinning and freeze-drying and investigated their potential for wound dressing. The QCP was composed of a sponge (QCC) containing collagen (COL) and QCS12 and a nanofibrous membrane (MQP) containing poly-ε-caprolactone (PCL) and QP12. The QCP composite membrane possessed feasible permeability (0.22 ± 0.01 g/(cm2·24 h)), available thermal stability, suitable mechanical properties with natural skin, and in vivo hemostatic efficiency. The bonds of the N-quaternary and Schiff base endow composite membranes with significant anti-microbial invasion, potentially enhancing the wound healing process with an eligible microenvironment. Meanwhile, QCP evinced fine hemocompatibility, low cytotoxicity, negligible skin irritation, and other desirable biosafety as an excellent wound dressing. QCP promoted collagen deposition and re-epithelization to accelerate healing and suppress scars in the full-thickness acute wound models. Furthermore, the evaluation in the chronic skin incision model of diabetes mellitus manifested high healing efficiency with a certain resistance to bacterial infection of the composite membrane. Taken together, the QCP composite membrane may be a potential antibacterial and hemostatic wound dressing.


Assuntos
Quitosana , Hemostáticos , Nanofibras , Nanofibras/química , Cicatrização , Coagulação Sanguínea , Colágeno/química , Bandagens , Quitosana/química , Antibacterianos/farmacologia
5.
Chest ; 163(1): 64-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863486

RESUMO

BACKGROUND: Few large-scale studies have demonstrated the efficacy of tobramycin nebulization in bronchiectasis. We evaluated the efficacy and safety of nebulized tobramycin inhalation solution (TIS) in adults with bronchiectasis with Pseudomonas aeruginosa infection. RESEARCH QUESTION: Can TIS effectively reduce sputum P aeruginosa density and improve the bronchiectasis-specific quality of life in patients with bronchiectasis with P aeruginosa infection? STUDY DESIGN AND METHODS: This was a phase 3, 16-week, multicenter, randomized, double-blind, placebo-controlled trial. Eligible adults with bronchiectasis were recruited from October 2018 to July 2021. On the basis of usual care, patients nebulized TIS (300 mg/5 mL twice daily) or normal saline (5 mL twice daily) via vibrating-mesh nebulizer. Treatment consisted of two cycles, each consisting of 28 days on-treatment and 28 days off-treatment. The coprimary end points included changes from baseline in P aeruginosa density and Quality-of-Life Bronchiectasis Respiratory Symptoms score on day 29. RESULTS: The modified intention-to-treat population consisted of 167 patients in the tobramycin group and 172 patients in the placebo group. Compared with placebo, TIS resulted in a significantly greater reduction in P aeruginosa density (adjusted mean difference, 1.74 log10 colony-forming units/g; 95% CI, 1.12-2.35; P < .001) and greater improvement in Quality-of-Life Bronchiectasis Respiratory Symptoms score (adjusted mean difference, 7.91; 95% CI, 5.72-10.11; P < .001) on day 29. Similar findings were observed on day 85. TIS resulted in a significant reduction in 24-h sputum volume and sputum purulence score on days 29, 57, and 85. More patients became culture negative for P aeruginosa in the tobramycin group than in the placebo group on day 29 (29.3% vs 10.6%). The incidence of adverse events and serious adverse events were comparable between the two groups. INTERPRETATION: TIS is an effective treatment option and has an acceptable safety profile in patients with bronchiectasis with P aeruginosa infection. TRIAL REGISTRATION: ClinicalTrials.gov; No. NCT03715322; URL: www. CLINICALTRIALS: gov.


Assuntos
Bronquiectasia , Infecções por Pseudomonas , Humanos , Adulto , Tobramicina , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/uso terapêutico , Qualidade de Vida , Administração por Inalação , Bronquiectasia/complicações , Bronquiectasia/tratamento farmacológico , Método Duplo-Cego , Pseudomonas aeruginosa
6.
Bioengineering (Basel) ; 9(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134956

RESUMO

The high-affinity potassium transporter (HKT) genes are key ions transporters, regulating the plant response to salt stress via sodium (Na+) and potassium (K+) homeostasis. The main goal of this research was to find and understand the HKT genes in rice and their potential biological activities in response to brassinosteroids (BRs), jasmonic acid (JA), seawater, and NaCl stress. The in silico analyses of seven OsHKT genes involved their evolutionary tree, gene structures, conserved motifs, and chemical properties, highlighting the key aspects of OsHKT genes. The Gene Ontology (GO) analysis of HKT genes revealed their roles in growth and stress responses. Promoter analysis showed that the majority of the HKT genes participate in abiotic stress responses. Tissue-specific expression analysis showed higher transcriptional activity of OsHKT genes in roots and leaves. Under NaCl, BR, and JA application, OsHKT1 was expressed differentially in roots and shoots. Similarly, the induced expression pattern of OsHKT1 was recorded in the seawater resistant (SWR) cultivar. Additionally, the Na+ to K+ ratio under different concentrations of NaCl stress has been evaluated. Our data highlighted the important role of the OsHKT gene family in regulating the JA and BR mediated rice salinity tolerance and could be useful for rice future breeding programs.

7.
Front Plant Sci ; 13: 982637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968148

RESUMO

Numerous papers studied the relations between nitrogen rate and rice yield in saline soils, whereas the rice root morphological and physiological characteristics mediating nitrogen rates in yield formation under varied salinity levels remain less concerns. Through a field experiment applied with five nitrogen rates (0, 210, 255, 300, 345, and 390 kg ha-1) in saline land, we found that rice yield peaked at 7.7 t ha-1 under 300 kg ha-1 nitrogen, and excessive N was not conductive for increasing yield. To further elucidate its internal physiological mechanism, a pot experiment was designed with three N rates (210 [N1], 300 [N2], 390 [N3] kg ha-1) and three salt concentrations (0 [S0], 1.5 [S1], 3.0 [S2] g kg-1 NaCl). Results showed that the average grain yield was decreased by 19.1 and 51.1% under S1 and S2, respectively, while notably increased by 18.5 and 14.5% under N2 and N3, respectively. Salinity stress significantly inhibited root biomass, root length and surface area, root oxidation capacity (ROC), K+ and K+/Na+ ratio, and nitrogen metabolism-related enzyme activities, whereas root Na+ and antioxidant enzyme activities were notably increased. The mechanism of how insufficient N supply (N1) affected rice yield formation was consistent at different salinity levels, which displayed adverse impacts on root morphological and physiological traits, thereby significantly inhibiting leaf photosynthesis and grain yield of rice. However, the mechanism thorough which excessive N (N3) affected yield formation was quite different under varied salinity levels. Under lower salinity (S0 and S1), no significant differences on root morphological traits and grain yield were observed except the significantly decline in activities of NR and GS between N3 and N2 treatments. Under higher salinity level (S2), the decreased ROC, K+/Na+ ratio due to increased Na+, antioxidant enzyme activities, and NR and GS activities were the main reason leading to undesirable root morphological traits and leaf photosynthesis, which further triggered decreased grain yield under N3 treatment, compared to that under N2 treatment. Overall, our results suggest that improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate.

8.
Front Plant Sci ; 13: 918460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712589

RESUMO

Salt is one of the main factors limiting the use of mudflats. In this study, the yield, quality, and mineral content of rice seeds under salt stress were investigated. A pot experiment was conducted with Yangyugeng2, Xudao9, and Huageng5 under 0, 17.1, 25.6, and 34.2 mM NaCl of salt concentration treatments. The results showed that salt stress can significantly decrease panicle number, grain number per panicle, 1000-grain weight and yield of rice, and the panicle number was among other things the main cause of yield loss under saline conditions. When the salt concentration is less than 34.2 mM NaCl, the salt stress increases the brown rice rate and milled rice rate, thus significant increasing head milled rice rate of salt-sensitive varieties but decreasing in salt-tolerant varieties. In addition, the grain length is more sensitive than grain width to salt stress. This study also indicates that different varieties of rice exhibit different salt tolerance under salt stress, the three rice varieties in this study, in order of salt tolerance, are Xudao9, Huageng5, and Yangyugeng2. Salt stress will increase the appearance, viscosity, degree of balance, and taste value, and decrease the hardness of rice when salt concentration is less than 17.1 mM NaCl in Yangyugeng2 and Huageng5 or 25.6 mM NaCl in Xudao9. The differences in starch pasting properties among rice varieties in this study are larger than those caused by salt stress. The uptake capacity of K, Mg, P, S, and Cu ions in the seeds of different rice varieties significantly vary, and salt stress causes significant differences in the uptake capacity of K, Na, and Cu ions in rice seeds. Rice varieties with high salt tolerance can be selected for the development and utilization of mudflats, and low concentration of salt stress will increase the rice quality, all of which are meaningful to agricultural production.

9.
Materials (Basel) ; 12(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022993

RESUMO

The residual stress introduced by laser shock peening (LSP) is one of the most important factors in improving metallic fatigue life. The shock wave pressure has considerable influence on residual stress distribution, which is affected by the distribution of laser energy. In this work, a titanium alloy is treated by LSP with flat-top and Gaussian laser beams, and the effects of spatial energy distribution on residual stress are investigated. Firstly, a 3D finite element model (FEM) is developed to predict residual stress with different spatial energy distribution, and the predicted residual stress is validated by experimental data. Secondly, three kinds of pulse energies, 3 J, 4 J and 5 J, are chosen to study the difference of residual stress introduced by flat-top and Gaussian laser beams. Lastly, the effect mechanism of spatial energy distribution on residual stress is revealed.

10.
Materials (Basel) ; 11(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509676

RESUMO

Boron carbonitrides (BCN) have attracted great interest in superhard or energy storage materials. In this work, thin BCN sheets were synthesized at 250 °C by a facile and green solvothermal method. The structure and morphology were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Based on the results of electrochemical experiments, the thin BCN sheet exhibited excellent capacitance performance (343.1 F/g at a current density of 0.5 A/g) and cycling stability (90%), which showed high potential applications in supercapacitors.

11.
Materials (Basel) ; 11(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382167

RESUMO

A series of "ravine-like" boron carbonitrides (abbreviation: BCN) were synthesized by a green precursor pyrolysis method at different temperatures (about 700-1100 °C). The highest electrochemical performance of BCN-800 (Named BCN-temperature) electrode was observed, because the "ravine-like" structure can significantly increase the contact area and improve the wettability between electrode and electrolyte. The BCN electrode exhibited ultrahigh specific capacitance 805.9 F/g (at a current density of 0.2 A/g), excellent rate capability, and good cycling stability (91%) after 3000 cycles at a current density of 8 A/g, showing high potential applications in supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA