Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
Cell Oncol (Dordr) ; 46(5): 1529-1541, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37178367

RESUMO

PURPOSE: Although immunotherapy improves clinical outcomes in several types of malignancies, as an immunologically 'cold' tumor, pancreatic ductal adenocarcinoma (PDAC) is arrantly resistant to immunotherapy. However, the role of N6-methyladenosine (m6A) modification in the immune microenvironment of PDAC is still poorly understood. METHODS: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to identify differentially expressed m6A related enzymes. The biological role and mechanism of METTL3 in PDAC growth and metastasis were determined in vitro and in vivo. RNA-sequencing and bioinformatics analysis were used to identify signaling pathways involved in METTL3. Western blot, m6A dot blot assays, co-immunoprecipitation, immunofluorescence, and flow cytometry were used to explore the molecular mechanism. RESULTS: Here, we demonstrate that METTL3, the key regulator of m6A modification, is downregulated in PDAC, and negatively correlates with PDAC malignant features. Elevated METTL3 suppresses PDAC growth and overcomes resistance to immune checkpoint blockade. Mechanistically, METTL3 promotes the accumulation of endogenous double-stranded RNA (dsRNA) through protecting m6A-transcripts from further Adenosine-to-inosine (A-to-I) editing. The dsRNA stress activates RIG-I-like receptors (RLRs) to enhance anti-tumor immunity, finally suppressing PDAC progression. CONCLUSION: Our findings indicate that tumor cell-intrinsic m6A modification participates in the regulation of tumor immune landscape. Adjusting the m6A level may be an effective strategy to overcome the resistance to immunotherapy and increase responsiveness to immunotherapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA de Cadeia Dupla , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Adenosina , Microambiente Tumoral , Metiltransferases , Neoplasias Pancreáticas
3.
Int J Biol Sci ; 19(6): 1894-1909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063425

RESUMO

Epithelial-mesenchymal transition (EMT) is closely associated with tumor invasion and metastasis. However, key regulators of EMT in pancreatic ductal adenocarcinoma (PDAC) need to be further studied. Bioinformatics analyses of pancreatic cancer public datasets showed that glycogen phosphorylase L (PYGL) expression is elevated in quasimesenchymal PDAC (QM-PDAC) and positively associated with EMT. In vitro cellular experiments further confirm PYGL as a crucial EMT regulator in PDAC cells. Functionally, PYGL overexpression promotes cell migration and invasion in vitro and facilitates liver metastasis in vivo, while PYGL knockdown has opposite effects. Mechanically, hypoxia induces PYGL expression in a hypoxia inducible factor 1α (HIF1α)-dependent manner and promotes glycogen accumulation. Elevated PYGL mobilizes accumulated glycogen to fuel glycolysis via its activity as a glycogen phosphorylase, thus inducing the EMT process, which could be suppressed by the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Clinically, PYGL expression is upregulated in PDAC and correlates with its malignant features and poor prognosis. Collectively, the data from our study reveal that the hypoxia/PYGL/glycolysis-induced EMT promotes PDAC metastasis, which establishes the rational for targeting hypoxia/PYGL/glycolysis/EMT signaling pathway against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/metabolismo , Fenótipo , Glicogênio Fosforilase Hepática/metabolismo , Neoplasias Pancreáticas
5.
J Immunol Res ; 2022: 7966089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879949

RESUMO

Neutrophils, known as an important part of the immune system, are the most abundant leukocyte population in peripheral blood, but excessive recruitment will lead to tissue/organ injury. RNA sequencing showed that ionizing radiation significantly increased the expression of characteristic genes of neutrophils in intestinal tissues compared with liver and lung tissues. By clearing neutrophils with an anti-Ly6G antibody, we found that neutrophil infiltration is critical for irradiation-induced intestinal injury. CXCR2 is a G-protein-coupled receptor that mediates the migration of neutrophils by combining with its ligands. Compared with observations in liver and lung tissues, we found that CXCR2 and its ligands, including CXCL1, CXCL2, CXCL3, and CXCL5, were all significantly upregulated in irradiated intestinal tissues. Further studies showed that SB225002, an inhibitor of CXCR2, could effectively inhibit the chemotaxis of neutrophils and tissue damage mediated by the CXCL-CXCR2 signalling pathway.


Assuntos
Neutrófilos , Receptores de Interleucina-8B , Fígado/metabolismo , Infiltração de Neutrófilos
6.
Cell Death Discov ; 8(1): 332, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869042

RESUMO

Lipid peroxidation-induced ferroptosis is a newly recognized type of programmed cell death. With the method of RNA sequencing, we found that irradiation (IR) markedly increased the expression of ferroptosis promotive genes, whereas reduced the expression of ferroptosis suppressive genes in murine intestine tissues, when compared with those of liver and lung tissues. By using ferroptosis inducer RSL-3 and inhibitor liproxstatin-1, we found that ferroptosis is essential for IR-induced intestinal injury. Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) is an important component for ferroptosis execution, and we found that ACSL4 expression was significantly upregulated in irradiated intestine tissues, but not in liver or lung tissues. Antibacterial and antifungal regents reduced the expression of ASCL4 and protected against tissue injury in irradiated intestine tissues. Further studies showed that troglitazone, a ACSL4 inhibitor, succeeded to suppresses intestine lipid peroxidation and tissue damage after IR.

7.
Theranostics ; 12(9): 4386-4398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673560

RESUMO

Rationale: Oxaliplatin is a widely used chemotherapy drug for advanced colorectal cancer (CRC) and its resistance is a major challenge for disease treatment. However, the molecular mechanism underlying oxaliplatin resistance remains largely elusive. Methods: An integrative analysis was performed to determine differentially expressed genes involved in oxaliplatin resistance. Loss- and gain-of-function studies were employed to investigate the roles of type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) on oxaliplatin resistance in CRC cells. Exosomes derived from CRC cell lines were assessed for PD-L1 level and the ability to promote oxaliplatin resistance. Quantitative real-time PCR, immunofluorescence, luciferase reporter assay, Western blotting and other techniques were conducted to decipher the molecular mechanism. Results: PIPKIγ was identified as a critical gene related to oxaliplatin resistance in CRC. Genetic manipulation studies revealed that PIPKIγ profoundly facilitated oxaliplatin resistance and affected the expression of DNA damage repair proteins. Mechanistically, PIPKIγ promoted the expression of the immune checkpoint molecule PD-L1 via activation of NF-κB signaling pathway. Genetic silencing of PD-L1 did not affect CRC cell proliferation but significantly sensitized CRC cells to oxaliplatin. Notably, PD-L1 was revealed to be encapsulated in the exosomes, and the addition of exosomal PD-L1 to sh-PD-L1 CRC cells restored oxaliplatin resistance. Pharmacological hijacking PIPKIγ-exosomal PD-L1 axis largely reduced oxaliplatin resistance in CRC cells. In vivo experiments showed that PD-L1 loss significantly blocked oxaliplatin resistance and the addition of PD-L1-enriched exosomes promoted tumor growth and reduced mouse survival time. Conclusion: Our findings reveal a previous unprecedented role of PIPKIγ in oxaliplatin resistance and provide a key mechanism of exosomal PD-L1 in CRC with potential therapeutics.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Oxaliplatina/farmacologia , Fosfatos/uso terapêutico , Fosfatos de Fosfatidilinositol/uso terapêutico
8.
JCI Insight ; 7(14)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708906

RESUMO

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/patologia , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Juncional/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
9.
Cell Death Dis ; 12(12): 1106, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836938

RESUMO

Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.


Assuntos
Adenocarcinoma/genética , Aminoácido Oxirredutases/metabolismo , Carcinoma Ductal Pancreático/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Microambiente Tumoral , Efeito Warburg em Oncologia
10.
Front Oncol ; 11: 695740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568024

RESUMO

Emerging evidence suggests that the tripartite motif (TRIM) family play important roles in tumor development and progression. Tripartite motif-containing 50 (TRIM50) is a member of the TRIM family, but little is known regarding its expression and potential functional roles in cancer. In this study, we first analyzed the expression pattern and clinical significance of TRIM50 in pancreatic cancer and found that TRIM50 expression is significantly reduced in pancreatic cancer tissues and its downregulation is associated with poor survival for pancreatic cancer patients. Functionally, TRIM50 overexpression in pancreatic cancer cells decreases their proliferation and motility capabilities and reverses the epithelial-mesenchymal transition (EMT) process, whereas TRIM50 depletion had the opposite effects. Mechanically, TRIM50 directly interacts with Snail1, a key regulator of EMT, and acts as an E3 ubiquitin ligase to target Snail1 for ubiquitous degradation. The function of TRIM50 in suppressing cell migration and EMT depends on TRIM50-promoted Snail1 degradation. In conclusion, our findings identify TRIM50 as a tumor suppressor that inhibits pancreatic cancer progression and reverses EMT via degrading Snail1 and provide new insights into the progression of pancreatic cancer.

11.
Front Immunol ; 12: 696766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354708

RESUMO

Inflammatory bowel disease (IBD) remains one of the most prevalent gastrointestinal diseases worldwide. Purinergic signaling has emerged as a promising therapeutic target of inflammation-associated diseases. However, little is known about the specific roles of purinergic receptors in IBD. In the present study, expression profile of purinergic receptors was screened in the public Gene Expression Omnibus (GEO) datasets, and we found that expression of P2RX1 was significantly upregulated in inflamed colon tissues. Then, purinergic receptor P2RX1 was genetically ablated in the background of C57BL/6 mice, and dextran sulfate sodium (DSS) was used to induce mice colitis. RNA sequencing results of colon tissues showed that genetic knockout of P2RX1 suppressed the inflammation responses in DSS-induced mice colitis. Flow cytometry indicated that neutrophil infiltration was inhibited in P2RX1 ablated mice. 16S ribosomal DNA sequencing revealed major differences of intestinal microbiota between WT and P2RX1 ablated mice. Functional metagenomics prediction indicated that the indole alkaloid biogenesis pathway was upregulated in P2RX1 gene ablated mice. Further studies revealed that microbiota metabolites (indole alkaloid)-involved aryl hydrocarbon receptor (AhR)/IL-22 axis was associated with the beneficial effects of P2RX1 ablation. Finally, we found that a specific P2RX1 inhibitor succeeded to improve the therapeutic efficiency of anti-TNF-α therapy in DSS-induced mice colitis. Therefore, our study suggests that targeting purinergic receptor P2RX1 may provide novel therapeutic strategy for IBD.


Assuntos
Anticorpos Neutralizantes/farmacologia , Bactérias/metabolismo , Benzenossulfonatos/farmacologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Microbioma Gastrointestinal , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Modelos Animais de Doenças , Quimioterapia Combinada , Disbiose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X1/genética , Transdução de Sinais
12.
J Exp Clin Cancer Res ; 40(1): 121, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832535

RESUMO

BACKGROUND: Reprogrammed glucose metabolism, also known as the Warburg effect, which is essential for tumor progression, is regarded as a hallmark of cancer. MAP17, a small 17-kDa non-glycosylated membrane protein, is frequently dysregulated in human cancers. However, its role in hepatocellular carcinoma (HCC) remains largely unknown. METHODS: Immunohistochemistry was used to analyze the expression pattern of MAP17 in HCC. Loss-of-function and gain-of-function studies were performed to investigate the oncogenic roles of MAP17 in vitro and in vivo. RNA sequencing, co-immunoprecipitation, immunofluorescence and western blotting were used to study the molecular mechanism of MAP17 affecting the tumor growth and glycolytic phenotype of HCC. RESULTS: An integrative analysis showed that MAP17, a small 17-kDa non-glycosylated membrane protein, is significantly related to the glycolytic phenotype of hepatocellular carcinoma (HCC). Firstly, we found that MAP17 expression is hypoxia-dependent and predicts a poor prognosis in HCC. Genetic silencing of MAP17 reduced the rate of glucose uptake, lactate release, extracellular acidification rate, and expression of glycolytic genes. Ectopic expression of wild type MAP17 but not its PDZ binding domain mutant MAP17-PDZm increased tumor glycolysis. Further research showed that MAP17 knockdown markedly retarded in vivo tumor growth in HCC. Importantly, attenuation of tumor glycolysis by galactose largely hijacked the growth-promoting role of MAP17 in HCC cells. RNA sequencing analysis revealed that MAP17 knockdown leads to transcriptional changes in the ROS metabolic process, cell surface receptor signaling, cell communication, mitotic cell cycle progression, and regulation of cell differentiation. Mechanistically, MAP17 exerted an increased tumoral phenotype associated with an increase in reactive oxygen species (ROS), which activates downstream effectors AKT and HIF1α to enhance the Warburg effect. In HCC clinical samples, there is a close correlation between MAP17 expression and HIF1α or phosphorated level of AKT. CONCLUSIONS: Our results show that MAP17 is a novel glycolytic regulator, and targeting MAP17/ROS pathway may be an alternative approach for the prevention and treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Imuno-Histoquímica/métodos , Neoplasias Hepáticas/genética , Proteínas de Membrana/metabolismo , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Transfecção , Efeito Warburg em Oncologia
13.
Int J Biol Sci ; 17(1): 107-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390837

RESUMO

Aerobic glycolysis, also known as the Warburg effect, is emerged as a hallmark of most cancer cells. Increased aerobic glycolysis is closely associated with tumor aggressiveness and predicts a poor prognosis. Pancreatic ductal adenocarcinoma (PDAC) is characterized by prominent genomic aberrations and increased glycolytic phenotype. However, the detailed molecular events implicated in aerobic glycolysis of PDAC are not well understood. In this study, we performed a comprehensive molecular characterization using multidimensional ''omic'' data from The Cancer Genome Atlas (TCGA). Detailed analysis of 89 informative PDAC tumors identified substantial copy number variations (MYC, GATA6, FGFR1, IDO1, and SMAD4) and mutations (KRAS, SMAD4, and RNF43) related to aerobic glycolysis. Moreover, integrated analysis of transcriptional profiles revealed many differentially expressed long non-coding RNAs involved in PDAC aerobic glycolysis. Loss-of-function studies showed that LINC01559 and UNC5B-AS1 knockdown significantly inhibited the glycolytic capacity of PDAC cells as revealed by reduced glucose uptake, lactate production, and extracellular acidification rate. Moreover, genetic silencing of LINC01559 and UNC5B-AS1 suppressed tumor growth and resulted in alterations in several signaling pathways, such as TNF signaling pathway, IL-17 signaling pathway, and transcriptional misregulation in cancer. Notably, high expression of LINC01559 and UNC5B-AS1 predicted poor patient prognosis and correlated with the maximum standard uptakevalue (SUVmax) in PDAC patients who received preoperative 18F-FDG PET/CT. Taken together, our results decipher the glycolysis-associated copy number variations, mutations, and lncRNA landscapes in PDAC. These findings improve our knowledge of the molecular mechanism of PDAC aerobic glycolysis and may have practical implications for precision cancer therapy.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/metabolismo , Efeito Warburg em Oncologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Variações do Número de Cópias de DNA , Genoma Humano , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia
14.
J Cell Biochem ; 121(2): 1986-1997, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31693252

RESUMO

Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA-mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.


Assuntos
Biomarcadores Tumorais/metabolismo , Glicólise , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Taxa de Sobrevida , Serina-Treonina Quinases TOR/genética , Proteínas com Motivo Tripartido/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Exp Clin Cancer Res ; 38(1): 214, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118109

RESUMO

BACKGROUND: Gastric cancer is one of the deadliest malignant tumours, with a high incidence in China, and is regulated by aberrantly overexpressed oncogenes. However, existing therapies are insufficient to meet patients' needs; thus, the identification of additional therapeutic targets and exploration of the underlying mechanism are urgently needed. GPAA1 is the subunit of the GPI transamidase that transfers the GPI anchor to proteins within the ER. The functional impacts of increased expression levels of GPAA1 in human cancers are not well understood. METHODS: Data mining was performed to determine the pattern of GPAA1 expression and the reason for its overexpression in tumour and adjacent normal tissues. In vitro and in vivo experiments evaluating proliferation and metastasis were performed using cells with stable deletion or overexpression of GPAA1. A tissue microarray established by the Ren Ji Hospital was utilized to analyse the expression profile of GPAA1 and its correlation with prognosis. Western blotting, an in situ proximity ligation assay, and co-immunoprecipitation (co-IP) were performed to reveal the mechanism of GPAA1 in gastric cancer. RESULTS: GPAA1 was a markedly upregulated oncogene in gastric cancer due to chromosomal amplification. GPAA1 overexpression was confirmed in specimens from the Ren Ji cohort and was associated with ERBB2 expression, predicting unsatisfactory patient outcomes. Aberrantly upregulated GPAA1 dramatically contributed to cancer growth and metastasis in in vitro and in vivo studies. Mechanistically, GPAA1 enhanced the levels of metastasis-associated GPI-anchored proteins to increase tumour metastasis and intensified lipid raft formation, which consequently promoted the interaction between EGFR and ERBB2 as well as downstream pro-proliferative signalling. CONCLUSIONS: GPAA1 facilitates the expression of cancer-related GPI-anchored proteins and supplies a more robust platform-the lipid raft-to promote EGFR-ERBB2 dimerization, which further contributes to tumour growth and metastasis and to cancer progression. GPAA1 could be a promising diagnostic biomarker and therapeutic target for gastric cancer.


Assuntos
Proteínas Ligadas por GPI/genética , Glicoproteínas de Membrana/genética , Receptor ErbB-2/genética , Neoplasias Gástricas/genética , Aciltransferases/genética , Idoso , Animais , Proliferação de Células/genética , Progressão da Doença , Intervalo Livre de Doença , Receptores ErbB/química , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Glicoproteínas de Membrana/química , Microdomínios da Membrana/genética , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Multimerização Proteica/genética , Receptor ErbB-2/química , Transdução de Sinais/genética , Neoplasias Gástricas/patologia , Análise Serial de Tecidos
16.
Gut ; 68(11): 1994-2006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30826748

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Macrófagos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
17.
Mol Cancer ; 18(1): 18, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704479

RESUMO

BACKGROUND: Lysyl oxidase-like 4 (LOXL4) has been found to be dysregulated in several human malignancies, including hepatocellular carcinoma (HCC). However, the role of LOXL4 in HCC progression remains largely unclear. In this study, we investigated the clinical significance and biological involvement of LOXL4 in the progression of HCC. METHODS: LOXL4 expression was measured in HCC tissues and cell lines. Overexpression, shRNA-mediated knockdown, recombinant human LOXL4 (rhLOXL4), and deletion mutants were applied to study the function of LOXL4 in HCC. Exosomes derived from HCC cell lines were assessed for the ability to promote cancer progression in standard assays. The effects of LOXL4 on the FAK/Src pathway were examined by western blotting. RESULTS: LOXL4 was commonly upregulated in HCC tissues and predicted a poor prognosis. Elevated LOXL4 was associated with tumor differentiation, vascular invasion, and tumor-node-metastasis (TNM) stage. Overexpression of LOXL4 promoted, whereas knockdown of LOXL4 inhibited cell migration and invasion of HCC in vitro, and overexpressed LOXL4 promoted intrahepatic and pulmonary metastases of HCC in vivo. Most interestingly, we found that HCC-derived exosomes transferred LOXL4 between HCC cells, and intracellular but not extracellular LOXL4 promoted cell migration by activating the FAK/Src pathway dependent on its amine oxidase activity through a hydrogen peroxide-mediated mechanism. In addition, HCC-derived exosomes transferred LOXL4 to human umbilical vein endothelial cells (HUVECs) though a paracrine mechanism to promote angiogenesis. CONCLUSIONS: Taken together, our data demonstrate a novel function of LOXL4 in tumor metastasis mediated by exosomes through regulation of the FAK/Src pathway and angiogenesis in HCC.


Assuntos
Aminoácido Oxirredutases/genética , Carcinoma Hepatocelular/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Neovascularização Patológica/genética , Adulto , Idoso , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Exossomos/patologia , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Hepatócitos/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neovascularização Patológica/metabolismo , Neovascularização Patológica/mortalidade , Neovascularização Patológica/patologia , Comunicação Parácrina , Proteína-Lisina 6-Oxidase , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Quinases da Família src/genética , Quinases da Família src/metabolismo
18.
J Cancer ; 8(18): 3764-3773, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151964

RESUMO

Integrin, beta-like 1 (ITGBL1), a ß-integrin-related extracellular matrix protein, was found more commonly up-regulated in gastric cancer (GC) by screening and analyzing Gene Expression Omnibus (GEO) and Oncomine databases, reminding us to explore its prognostic significance in GC. In our current study, we observed that ITGBL1 expression was significantly up-regulated in GC compared with normal controls in clinical specimens. In addition, elevated ITGBL1 expression was positively correlated with patients' tumor-node-metastasis (TNM) stage and distant metastasis. Kaplan-Meier analysis indicated that high ITGBL1 expression was significantly associated with shorter survival times in GC patients. Multivariate Cox regression analysis confirmed ITGBL1 expression as an independent prognostic factor in GC. Gene set enrichment analysis (GSEA) of multiple GEO datasets revealed a close relationship between ITGBL1 expression and the KRAS/epithelial-mesenchymal transition (EMT) signaling pathway. In conclusion, these data provide evidences that ITGBL1 is a potential predictor and may be involved in cancer cell invasion and metastasis via inducing EMT, and the ITGBL1-related pathways may represent a novel therapeutic strategy for treatment of GC.

19.
J Immunol Res ; 2017: 3072745, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29464186

RESUMO

Exemestane (EXE) is an irreversible steroidal aromatase inhibitor mainly used as an adjuvant endocrine therapy for postmenopausal women suffering from breast cancer. Besides inhibiting aromatase activity, EXE has multiple biological functions, such as antiproliferation, anti-inflammatory, and antioxidant activities which are all involved in hepatic fibrosis. Therefore, we investigated the role of EXE during the progress of hepatic fibrosis. The effect of EXE on liver injury and fibrosis were assessed in two hepatic fibrosis rat models, which were induced by either carbon tetrachloride (CCl4) or bile duct ligation (BDL). The influence of EXE treatment on activation and proliferation of primary rat hepatic stellate cells (HSCs) was observed in vitro. The results showed that EXE attenuated the liver fibrosis by decreasing the collagen deposition and α-SMA expression in vivo and inhibited the activation and proliferation of primary rat HSCs in vitro. Additionally, EXE promoted the secretion of antifibrotic and anti-inflammatory cytokine IL-10 in vivo and in HSC-T6 culture media. In conclusion, our findings reveal a new function of EXE on hepatic fibrosis and prompted its latent application in liver fibrotic-related disease.


Assuntos
Androstadienos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Células Estreladas do Fígado/fisiologia , Fígado/patologia , Actinas/metabolismo , Animais , Ductos Biliares/cirurgia , Tetracloreto de Carbono/toxicidade , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Interleucina-10/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
20.
Sci Rep ; 6: 31071, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506146

RESUMO

Gastrointestinal stromal tumor (GIST) is the most major mesenchymal neoplasm of the digestive tract. Up to now, imatinib mesylate has been used as a standard first-line treatment for irresectable and metastasized GIST patients or adjuvant treatment for advanced GIST patients who received surgical resection. However, secondary resistance to imatinib usually happens, resulting in a major obstacle in GIST successful therapy. In this study, we first found that collagen and calcium binding EGF domains 1 (CCBE1) expression gradually elevated along with the risk degree of NIH classification, and poor prognosis emerged in the CCBE1-positive patients. In vitro experiments showed that recombinant CCBE1 protein can enhance angiogenesis and neutralize partial effect of imatinib on the GIST-T1 cells. In conclusion, these data indicated that CCBE1 may be served as a new predictor of prognosis in post-operative GIST patients and may play an important role in stimulating GIST progression.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Mesilato de Imatinib/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação ao Cálcio/genética , Carcinogênese , Linhagem Celular Tumoral , Resistência a Medicamentos , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/mortalidade , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Prognóstico , Análise de Sobrevida , Proteínas Supressoras de Tumor/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA