Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Child Adolesc Psychiatry Ment Health ; 18(1): 65, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845050

RESUMO

BACKGROUND: Gender nonconformity (GNC) is an under-researched area of adolescent health that is of increasing interest to researchers and general public. However, little is known about whether it is associated with anabolic-androgenic steroids (AAS) misuse. We aimed to investigate the association among high school students using a cross-sectional design. METHODS: We pooled the 6 school districts data from the Youth Risk Behavior Survey in 2017 and 2019. We compared the prevalence of AAS misuse among gender nonconforming and conforming students. AAS misuse was determined on the reported experience of lifetime non-prescription steroid use. GNC was derived from perceived gender expression and sex. We estimated the sex-stratified adjusted odds ratios (AORs) for the association of GNC with AAS misuse after adjusting for race/ethnicity, grade, and sexual orientation. RESULTS: The study population consisted of 17,754 US high school students including 9143 (49.67%) female students. Among female students, GNC was significantly associated with moderate (AOR, 3.69; 95% CI 1.28-10.62; P = 0.016) and severe (AOR, 5.00; 95% CI 1.05-23.76; P = 0.043) AAS misuse, but not with any AAS misuse (AOR, 0.85; 95% CI 0.34-2.14; P = 0.734). Among male students, GNC was significantly associated with any (AOR, 4.75; 95% CI 2.93-7.69; P < 0.001), moderate (AOR, 4.86; 95% CI 2.66-8.89; P < 0.001) and severe (AOR, 4.13; 95% CI 1.43-11.95; P = 0.009) AAS misuse. We did not observe a dose-response relationship between GNC and any AAS misuse in female and male students. CONCLUSIONS: This study suggests that AAS misuse is associated with GNC among female and male adolescents.

2.
Environ Res ; 252(Pt 4): 119070, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710431

RESUMO

Mangrove wetlands, as one of the natural ecosystems with the most ecological services, have garnered widespread attention about their microbial driven biogeochemical cycling. Urbanization have led to different spatial patterns of environmental conditions and microbial communities in mangroves. However, viruses, as the pivotal drivers of biogeochemical cycling in mangroves, remain inadequately explored in terms of how their ecological potential and complex interactions with host respond to functional zonings. To address this knowledge gap, we conducted a comprehensive investigation on the structural and functional properties of temperate and lytic viruses in mangrove wetlands from different functional zonings by jointly using high-throughput sequencing, prokaryotic and viral metagenomics. Multiple environmental factors were found to significantly influence the taxonomic and functional composition, as well as lysogen-lysis decision-making of mangrove viruses. Furthermore, enriched auxiliary metabolic genes (AMGs) involved in methane, nitrogen and sulfur metabolism, and heavy metal resistance were unveiled in mangrove viruses, whose community composition was closely related to lifestyle and host. The virus-host pairs with different lifestyles were also discovered to react to environmental changes in different ways, which provided an empirical evidence for how virus and bacteria dynamics were specific to viral lifestyles in nature. This study expands our comprehension of the intricate interactions among virus, prokaryotic host and the environment in mangrove wetlands from multiple perspectives, including viral lifestyles, virus-host interactions, and habitat dependence. Importantly, it provides a new ecological perspective on how mangrove viruses are adapted to the stress posed by urbanization.


Assuntos
Áreas Alagadas , Vírus/genética , Ecossistema , Metagenômica
3.
Water Res ; 258: 121821, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38796913

RESUMO

Phosphorus affects microbial metabolic activity, nitrogen and carbon cycling in mangrove sediment, but its influence on carbon stability and greenhouse gases emission remains unclear. This study compared greenhouse gases (CO2, N2O, and CH4) emissions from mangrove sediment receiving wastewater containing various phosphorus concentrations, and evaluated its long term effect on sediment carbon flux when phosphorus pollution is eliminated. Significant increases in greenhouse gases flux and decrease of total organic carbon and readily oxidizable organic carbon in the sediment were observed after phosphorus discharge. Specifically, the N2O flux was reduced significantly at high phosphorus levels while the CO2 flux and the microbial biomass organic carbon was increased. The copy numbers of ammonia oxidation (AOA-amoA, AOB-amoA) gene, denitrification (narG, nirK) gene and methanogenesis (mcrA) gene increased with the increasing phosphorus concentration. During the wastewater discharge period for 70 days, the global warming potential of sediment flux at high phosphorus discharge condition was more than 4 times that of the control group, and the loss of total organic carbon and readily oxidizable organic carbon was 4.66 % and 7.1 %, respectively. During the remediation period (71-101 days), the greenhouse gases flux decreased rapidly, ends up with a similar level of the control group. Our results indicate that using mangrove wetland for pollution minimization in the coastal aquaculture industry could increase greenhouse gases emisison significantly, it is therefore essential to reduce phosphorus discharges from various anthropogenic activities, and local authorities must set up more stringent discharge standards in the future.

4.
Plant Physiol Biochem ; 212: 108766, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38797011

RESUMO

Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.

5.
Anal Chem ; 96(16): 6292-6300, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597814

RESUMO

Toward the challenges of signaling transduction amplified in enantioselective recognition, we herein devised an innovative strategy for highly selective recognition of amino acids and their derivatives, leveraging photothermal effects. In this approach, bifunctional l-ascorbic acid is employed to reduce silver ions in situ on Au nanostars. Simultaneously, its oxidate (l-dehydroascorbic acid) is bonded to the silver shell as a chiral selector to prepare chiral nanoparticles (C-AuNS@Ag NPs) with the ability to recognize stereoisomers and sensitively modulate the photothermal effect. l-Dehydroascorbic acid can selectively capture one of the enantiomers of the two forms through hydrogen bonding and drive aggregation of the nanoparticles, which sharply enhances the photothermal effect. Consequently, the two forms of the system exhibit a significant temperature difference, which enables the discrimination and quantification of enantiomers. Our strategy verifies that six chiral amino acids and their derivatives can be discriminated with enantioselective response values of up to 79. Additionally, the chiral recognition mechanism was revealed through density functional theory (DFT) calculations, providing a paradigm shift in the development of enantiomeric recognition strategies.

6.
Talanta ; 273: 125899, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484502

RESUMO

Sensing and characterizing water-soluble polypeptides are essential in various biological applications. However, detecting polypeptides using Surface-Enhanced Raman Scattering (SERS) remains a challenge due to the dominance of aromatic amino acid residues and backbones in the signal, which hinders the detection of non-aromatic amino acid residues. Herein, intra-nanoparticle plasmonic nanogap were designed by etching the Ag shell in Au@AgNPs (i.e., obtaining AuAg cores) with chlorauric acid under mild conditions, at the same time forming the outermost Au shell and the void between the AuAg cores and the Au shell (AuAg@void@Au). By varying the Ag to added chloroauric acid molar ratios, we pioneered a simple, controllable, and general synthetic strategy to form interlayer-free nanoparticles with tunable Au shell thickness, achieving precise regulation of electric field enhancement within the intra-nanogap. As validation, two polypeptide molecules, bacitracin and insulin B, were successfully synchronously encapsulated and spatial-confined in the intra-nanogap for sensing. Compared with concentrated 50 nm AuNPs and Au@AgNPs as SERS substrates, our simultaneous detection method improved the sensitivity of the assay while benefiting to obtain more comprehensive characteristic peaks of polypeptides. The synthetic strategy of confining analytes while fabricating plasmonic nanostructures enables the diffusion of target molecules into the nanogap in a highly specific and sensitive manner, providing the majority of the functionality required to achieve peptide detection or sequencing without the hassle of labeling.


Assuntos
Cloretos , Compostos de Ouro , Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Ouro/química , Nanoestruturas/química , Análise Espectral Raman/métodos
7.
New Phytol ; 242(1): 137-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366280

RESUMO

The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.


Assuntos
Arabidopsis , Raízes de Plantas , Raízes de Plantas/metabolismo , Lipídeos/química , Transporte Biológico , Arabidopsis/metabolismo , Água/metabolismo , Produtos Agrícolas/metabolismo
8.
Anim Biotechnol ; 35(1): 2258188, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38193802

RESUMO

Selenium (Se) is an essential micronutrient for humans and animals and is a powerful antioxidant that can promote reproductive and immune functions. The purpose of this study was to evaluate the effects of supplemental dietary selenium-enriched yeast (SeY) on egg quality, gut morphology and microflora in laying hens. In total, 100 HY-Line Brown laying hens (45-week old) were randomly allocated to two groups with 10 replicates and fed either a basal diet (without Se supplementation) or a basal diet containing 0.2 mg/kg Se in the form of SeY for 8 weeks. The Se supplementation did not have a significant effect on egg quality and intestinal morphology of laying hens. Based on the 16S rRNA sequencing, SeY dietary supplementation effectively modulated the cecal microbiota structure. An alpha diversity analysis demonstrated that birds fed 100 mg/kg SeY had a higher cecal bacterial diversity. SeY dietary addition elevated Erysipelotrichia (class), Lachnospiraceae (family), Erysipelotrichaceae (family) and Ruminococcus_torques_group (genus; p < .05). Analysis of microbial community-level phenotypes revealed that SeY supplementation decreased the microorganism abundance of facultatively anaerobic and potentially pathogenic phenotypes. Overall, SeY supplementation cannot significantly improve intestinal morphology; however, it modulated the composition of cecal microbiota toward a healthier gut.


Assuntos
Ração Animal , Microbioma Gastrointestinal , Selênio , Animais , Feminino , Ração Animal/análise , Galinhas/microbiologia , Dieta/veterinária , Suplementos Nutricionais , RNA Ribossômico 16S/genética , Saccharomyces cerevisiae , Selênio/farmacologia , Selênio/análise , Distribuição Aleatória
9.
Nat Plants ; 10(2): 315-326, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195907

RESUMO

Intracellular inorganic orthophosphate (Pi) distribution and homeostasis profoundly affect plant growth and development. However, its distribution patterns remain elusive owing to the lack of efficient cellular Pi imaging methods. Here we develop a rapid colorimetric Pi imaging method, inorganic orthophosphate staining assay (IOSA), that can semi-quantitatively image intracellular Pi with high resolution. We used IOSA to reveal the alteration of cellular Pi distribution caused by Pi starvation or mutations that alter Pi homeostasis in two model plants, rice and Arabidopsis, and found that xylem parenchyma cells and basal node sieve tube element cells play a critical role in Pi homeostasis in rice. We also used IOSA to screen for mutants altered in cellular Pi homeostasis. From this, we have identified a novel cellular Pi distribution regulator, HPA1/PHO1;1, specifically expressed in the companion and xylem parenchyma cells regulating phloem Pi translocation from the leaf tip to the leaf base in rice. Taken together, IOSA provides a powerful method for visualizing cellular Pi distribution and facilitates the analysis of Pi signalling and homeostasis from the level of the cell to the whole plant.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Fosfatos/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo
10.
J Sci Food Agric ; 104(7): 4015-4027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294304

RESUMO

BACKGROUND: The bacteriocins, particularly derived from lactic acid bacteria, currently exhibit potential as a promising food preservative owing to their low toxicity and potent antimicrobial activity. This study aimed to evaluate the efficacy of lactocin 63, produced by Lactobacillus coryniformis, in inhibiting the deterioration of Lateolabrax japonicas during chilled storage, while also investigating its underlying inhibitory mechanism. The measurement of total viable count, biogenic amines, and volatile organic compounds were conducted, along with high-throughput sequencing and sensory evaluation. RESULTS: The findings demonstrated that treatment with lactocin 63 resulted in a notable retardation of bacterial growth in L. japonicas fish fillet during refrigerated storage compared with the water-treated and nisin-treated groups. Moreover, lactocin 63 effectively maintained the microbial flora balance in the fish fillet and inhibited the proliferation and metabolic activity of specific spoilage microorganisms, particularly Shewanella, Pseudomonas, and Acinetobacter. Furthermore, the production of unacceptable volatile organic compounds (e.g. 1-octen-3-ol, hexanal, nonanal), as well as the biogenic amines derived from the bacterial metabolism, could be hindered, thus preventing the degradation in the quality of fish fillets and sustaining relatively high sensory quality. CONCLUSION: The results of this study provide valuable theoretical support for the development and application of lactocin 63, or other bacteriocins derived from lactic acid bacteria, as potential bio-preservatives in aquatic food. © 2024 Society of Chemical Industry.


Assuntos
Bacteriocinas , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/farmacologia , Bacteriocinas/farmacologia , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Peixes , Aminas Biogênicas/análise , Armazenamento de Alimentos/métodos , Conservação de Alimentos/métodos , Microbiologia de Alimentos
11.
Medicine (Baltimore) ; 103(2): e35763, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215114

RESUMO

The relationship between body size and visual impairment (VI) presents a controversial topic in the health sciences. This study aims to evaluate and clarify the potential associations between these 2 variables. We conducted a cross-sectional study on first-year students enrolled in 2022 at the Southwest University of Political Science & Law. The students underwent a series of physical examinations and visual acuity tests. Visual impairment was classified into 3 categories: mild, moderate, or severe. We used logistic regression analysis to examine the association between body size and VI. Our findings indicated a high prevalence of VI among first-year university students; more than 80% of them were affected. In bivariate analysis, height and weight were negatively related to the presence of VI. However, BMI (body mass index) was not related to VI. By adjusting all available confounders, no associations between BMI (OR = 1.002, 95% CI = 0.974-1.032, P = .877), height (OR = 0.998, 95% CI = 0.967-1.010, P = .298), weight (OR = 0.999, 95% CI = 989-1.009, P = .860), and mild-severe VI were found in females. For males, the ORs were 0.988 (95% CI = 0.955-1.021, P = .459), 0.980 (95% CI = 0.954-1.006, P = .135), and 0.995 (95% CI = 0.985-1.004, P = .285) for BMI, height, and weight, respectively. Among young adults demonstrating high academic performance in high schools, the cessation of physical growth, combined with potential eye strain resulting from overuse, may mitigate any previously observed positive associations between physical status and VI in younger children.


Assuntos
Baixa Visão , Masculino , Feminino , Criança , Adulto Jovem , Humanos , Estudos Transversais , Universidades , Transtornos da Visão/epidemiologia , Tamanho Corporal , Estudantes
12.
Phytomedicine ; 123: 155237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056148

RESUMO

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Assuntos
Isquemia Encefálica , Glucosídeos , Glicosídeos Iridoides , AVC Isquêmico , Polifenóis , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Verbena , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Doenças Neuroinflamatórias , Apigenina , Luteolina/uso terapêutico , Simulação de Acoplamento Molecular , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Interleucina-17
13.
Int J Biol Macromol ; 256(Pt 1): 128368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029914

RESUMO

This study was conducted to investigate the effects of tea polyphenols (TP) and probiotics (PB) on the production performance, biochemical indices, and gut health of laying hens. A total of 400 Hy-line Brown layers (45 weeks old) were randomly assigned to 8 diet groups for 8-week feeding trial. Compared with the control basal diet (CT), dietary high dosage of TP and PB (HTP-PB) increased egg mass (P < 0.05). Supplementation with HTP-PB improved the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the malonic dialdehyde (MDA) content (P < 0.05) without affecting the contents of immunoglobulins in the serum. The combination of HTP and PB supplementation promoted the secretion of estradiol (E2) and progesterone (PROG) compared with treatment with TP or PB alone (P < 0.05). The combined use of HTP and PB induced higher jejunal villus height (VH) than the CT group (P < 0.05). Dietary TP and PB could optimize the functional network of intestinal microflora and the interactions between the intestinal microflora and the host. Therefore, the combined use of the high dosage of TP and PB affected laying performance, improved antioxidant capacity, and promoted intestinal health, which may be associated with regulation of the intestinal microbiota.


Assuntos
Suplementos Nutricionais , Probióticos , Animais , Feminino , Ração Animal/análise , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Polifenóis/farmacologia , Probióticos/farmacologia , Chá/química
14.
Medicine (Baltimore) ; 102(51): e36798, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134065

RESUMO

To confirm whether ocular symptoms and complaints related to the COVID-19 infection persist after recovery. A cross-sectional study was conducted on people who came to the healthcare center for regular physical examinations when the lockdown lifted for nearly 1 month. Ophthalmologists performed comprehensive ocular examinations. The infection history of COVID-19 was identified by a self-reported reverse transcription-PCR (RT-PCR) test of a nasopharyngeal swab sample for SARS-CoV-2 or a novel coronavirus antigen test with self-reported typical infection symptoms. Demographic data was collected from their healthcare reports. Ocular history and ocular symptoms were collected through face-to-face interviewing. Of a total of 308 participants, 264 (85.7%) reported COVID-19 infection; 73 (27.65%) of infected persons complained of various ocular symptoms during or after infection; and only 15 (5.68%) persons reported ocular symptoms after recovery. Infection significantly increased the complaints of red eye and eye pain compared to the time before knockdown. There were no significant differences between infections and noninfectious infections in various ocular examinations at the time of examination. The duration between the day of infection onset and examination day was unrelated to all ocular examinations. COVID-19 infection can lead to some ocular symptoms, especially conjunctival congestion and ocular pain in the infective stage, but may not cause persistent ocular symptoms in about 1 month after recovery. The results of this study may help relieve public concerns about coronavirus infection in the eyes. However, more studies on various coronavirus infections, with large sample sizes, are warranted in multi-center and community-based populations.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Transversais , Controle de Doenças Transmissíveis , Transtornos da Visão , China/epidemiologia , Dor Ocular
15.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37921447

RESUMO

In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus. The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus. The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus, for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.


Assuntos
Bacillus , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Microbiologia do Solo , Parede Celular/química , Ácido Diaminopimélico/química , Peptidoglicano/química , Vitamina K 2/química
16.
Appl Microbiol Biotechnol ; 107(21): 6621-6640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672069

RESUMO

Infections caused by pathogens can be a significant challenge in wound healing, particularly when antimicrobial resistance is a factor. This can pose a serious threat to human health and well-being. In this scenario, it is imperative to explore novel antimicrobial agents to fight against multi-drug resistant (MDR) pathogenic bacteria. This study employed rational design strategies, including truncation, amino acid replacement, and heterozygosity, to obtain seven α-helical, cationic, and engineered peptides based on the original template of Abhisin. Among the analogs of Abhisin, AB7 displayed broad-spectrum and potent antimicrobial activity, superior targeting of membranes and DNA, and the ability to disrupt biofilms and anti-endotoxins in vitro. Additionally, we evaluated the anti-infection ability of AB7 using a murine skin wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) and found that AB7 displayed negligible toxicity both in vitro and in vivo. Furthermore, AB7 exhibited desirable therapeutic efficacy by reducing bacterial burden and pro-inflammatory mediators, modulating cytokines, promoting wound healing, and enhancing angiogenesis. These results highlight the potential of AB7 as a promising candidate for a new antibiotic. KEY POINTS: • A α-helical, cationic, and engineered peptide AB7 was obtained based on Abhisin. • AB7 exhibited potent antimicrobial activity and multiple bactericidal actions. • AB7 effectively treated infected skin wounds in mice.

17.
Plant Physiol ; 193(4): 2260-2277, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37549378

RESUMO

Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.


Assuntos
Polaridade Celular , Transdução de Sinais , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Lipídeos
18.
BMC Infect Dis ; 23(1): 521, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553613

RESUMO

BACKGROUND: Although most patients can recover from SARS-CoV-2 infection during the short-term, the long-term effects of COVID-19 on the brain remain explored. Functional MRI (fMRI) could potentially elucidate or otherwise contribute to the investigation of the long COVID syndrome. A lower fMRI response would be translated into decreased brain activity or delayed signal transferring reflecting decreased connectivity. This research aimed to investigate the long-term alterations in the local (regional) brain activity and remote (interregional) functional connection in recovered COVID-19. METHODS: Thirty-five previously hospitalized COVID-19 patients underwent 3D T1weighed imaging and resting-state fMRI at 6-month follow-up, and 36 demographic-matched healthy controls (HCs) were recruited accordingly. The amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) was used to assess the regional intrinsic brain activity and the influence of regional disturbances on FC with other brain regions. Spearman correlation analyses were performed to evaluate the association between brain function changes and clinical variables. RESULTS: The incidence of neurosymptoms (6/35, 17.14%) decreased significantly at 6-month follow-up, compared with COVID-19 hospitalization stage (21/35, 60%). Compared with HCs, recovered COVID-19 exhibited higher ALFF in right precuneus, middle temporal gyrus, middle and inferior occipital gyrus, lower ALFF in right middle frontal gyrus and bilateral inferior temporal gyrus. Furthermore, setting seven abnormal activity regions as seeds, we found increased FC between right middle occipital gyrus and left inferior occipital gyrus, and reduced FC between right inferior occipital gyrus and right inferior temporal gyrus/bilateral fusiform gyrus, and between right middle frontal gyrus and right middle frontal gyrus/ supplementary motor cortex/ precuneus. Additionally, abnormal ALFF and FC were associated with clinical variables. CONCLUSIONS: COVID-19 related neurological symptoms can self heal over time. Recovered COVID-19 presented functional alterations in right frontal, temporal and occipital lobe at 6-month follow-up. Most regional disturbances in ALFF were related to the weakening of short-range regional interactions in the same brain function.


Assuntos
Mapeamento Encefálico , COVID-19 , Humanos , Mapeamento Encefálico/métodos , Síndrome de COVID-19 Pós-Aguda , Seguimentos , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
19.
Talanta ; 265: 124917, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429253

RESUMO

Rapid component separation and accurate identification of bisphenols compounds (BPs) in real water sample remain an attractive challenge due to the trace amounts and structural similarities of BPs, and complexity of real samples. Here, we designed and synthesized chemically modified cellulose p-toluenesulfonate (CTSA) to encapsulate octadecylamine-modified gold nanoparticles (Au-ODA), obtaining 3D plasmonic cellulose (Au@CTSA). Simultaneously, by virtue of the high surface area in the 3D network of CTSA and the solvent volatile deposition, BPs in water were in situ extracted and concentrated in Au@CTSA microspheres. Since the 3D network of Au@CTSA supports the formation of "hotspots", the number of "hotspots" available is greatly improved, enabling excellent SERS detection of BPs. Based on the collected SERS spectra, machine learning was utilized to analyze the overall profile of BPs, which eliminated the subjective judgment of the concentration by the Au@CTSA sensor using a single characteristic peak. In this way, the accuracy of identification of BPs was significantly improved. The machine learning-driven Au@CTSA sensor realized the detection of traces bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) in water sample, pushing quantitative detection of different concentrations of BPs and contributing facile indicators for water quality monitoring.

20.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446089

RESUMO

Abiotic stress is the adverse effect of any abiotic factor on a plant in a given environment, impacting plants' growth and development. These stress factors, such as drought, salinity, and extreme temperatures, are often interrelated or in conjunction with each other. Plants have evolved mechanisms to sense these environmental challenges and make adjustments to their growth in order to survive and reproduce. In this review, we summarized recent studies on plant stress sensing and its regulatory mechanism, emphasizing signal transduction and regulation at multiple levels. Then we presented several strategies to improve plant growth under stress based on current progress. Finally, we discussed the implications of research on plant response to abiotic stresses for high-yielding crops and agricultural sustainability. Studying stress signaling and regulation is critical to understand abiotic stress responses in plants to generate stress-resistant crops and improve agricultural sustainability.


Assuntos
Produtos Agrícolas , Estresse Fisiológico , Estresse Fisiológico/fisiologia , Desenvolvimento Vegetal , Transdução de Sinais , Agricultura , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA