Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Hazard Mater ; 476: 135192, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002479

RESUMO

Microplastics (MPs) are emerging as anthropogenic vectors to form plastisphere, facilitating microbiome colonization and pathogenic dissemination, thus contributing to environmental and health crises across various ecosystems. However, a knowledge gap persists regarding MPs risks and their driving factors in certain unique and vulnerable ecosystems, such as Karst travertine lakes, some of which are renowned World Natural Heritage Sites under ever-increasing tourism pressure. We hypothesized that tourism activities serve as the most important factor of MPs pollution, whereas intrinsic features, including travertine deposition can exacerbate potential environmental risks. Thus, metagenomic approaches were employed to investigate the geographical distribution of the microbiome, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their combined environmental risks in Jiuzhaigou and Huanglong, two famous tourism destinations in Southwest China. The plastisphere risks were higher in Huanglong, contradicting our hypothesis that Jiuzhaigou would face more crucial antibiotic risks due to its higher tourist activities. Specifically, the levels of Lipopolysaccharide Lewis and fosD increased by sevenfold and 20-fold, respectively, from upstream to downstream in Huanglong, whereas in Jiuzhaigou, no significant accrual was observed. Structural equation modeling results showed that travertine deposition was the primary contributor to MPs risks in alpine karstic lakes. Our findings suggest that tourism has low impact on MPs risks, possibly because of proper management, and that travertine deposition might act as an MPs hotspot, emphasizing the importance of considering the unique aspects of travertine lakes in mitigating MPs pollution and promoting the sustainable development of World Natural Heritage Sites.

2.
Nat Commun ; 15(1): 5866, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997249

RESUMO

The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.


Assuntos
Bactérias , Biofilmes , Estuários , Nitrificação , Água do Mar , Água do Mar/microbiologia , Bactérias/metabolismo , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Ecossistema , Microbiota/fisiologia , Metagenômica , Filogenia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Isótopos de Nitrogênio/metabolismo
3.
Biochem Biophys Res Commun ; 730: 150366, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991254

RESUMO

Laryngeal squamous cell carcinoma (LSCC) with a high incidence and mortality rate, has a serious impact worldwide. Phosphofructokinase-1 liver type (PFKL) is a major enzyme in glycolysis progress, but its role in modulating tumorigenesis and cisplatin (DDP) chemosensitivity of LSCC was still unclear. The mRNA and protein levels of PFKL were detected by qRT-PCR and immunohistochemical assay. Cell Counting Kit-8 assay and flow cytometry were carried out to observe cell viability, as well as apoptosis and mitochondrial reactive oxygen species (mito-ROS). Extracellular acidification rate and lactate content were measured using extracellular flux analysis and lactate assay kit. Immunofluorescent staining was used to evaluate the expression of γ-H2AX foci. DNA damage was detected via single-cell gel electrophoresis. Western blotting was introduced to evaluate the protein level of PFKL, LDHA, γ-H2AX, cleaved PARP, H3K27ac, and H3K9ac. Mice xenograft model of LSCC was built for in vivo validation. The PFKL expression was significantly increased in LSCC and associated with poor survival of LSCC patients. Knockdown of PFKL in LSCC cells significantly inhibited cell viability, ECAR, lactate content, and LDHA expression, but promoted mito-ROS level. Furthermore, knockdown of PFKL enhanced response of LSCC cells to DDP by increasing DDP-induced apoptosis, promoting DDP-induced mito-ROS level, γ-H2AX foci, tail DNA, and the expression of γ-H2AX and cleaved PARP. However, the overexpression of PFKL in LSCC cells had opposite experimental results. Nude mice tumor formation experiment proved that downregulation of PFKL significantly enhanced response of cells to DDP, demonstrated by reduced tumor volume, weight and increased TUNEL-positive cells. Suppression of CBP/EP300-mediated PFKL transcription inhibited cell viability and glycolysis and promoted mito-ROS in LSCC. PFKL promotes cell viability and DNA damage repair in DDP-treated LSCC through regulation of glycolysis pathway.

4.
Nat Chem Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783134

RESUMO

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.

5.
Angew Chem Int Ed Engl ; 63(29): e202404568, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696242

RESUMO

Few-atom metal clusters (FAMCs) exhibit superior performance in catalyzing complex molecular transformations due to their special spatial environments and electronic states, compared to single-atom catalysts (SACs). However, achieving the efficient and accurate synthesis of FAMCs while avoiding the formation of other species, such as nanoparticles and SACs, still remains challenges. Herein, we report a two-step strategy for synthesis of few-atom platinum (Pt) clusters by predeposition of zinc single-atom-glue (Zn1) on MgO nanosheets (Ptn-Zn1/MgO), where FAMCs can be obtained over a wide range of Pt contents (0.09 to 1.45 wt %). Zn atoms can act as Lewis acidic sites to allow electron transfer between Zn and Pt through bridging O atoms, which play a crucial role in the formation and stabilization of few-atom Pt clusters. Ptn-Zn1/MgO exhibited a high selectivity of 93 % for anti-Markovnikov alkene hydrosilylation. Moreover, an excellent activity with a turnover frequency of up to 1.6×104 h-1 can be achieved, exceeding most of the reported Pt SACs. Further theoretical studies revealed that the Pt atoms in Ptn-Zn1/MgO possess moderate steric hindrance, which enables high selectivity and activity for hydrosilylation. This work presents some guidelines for utilizing atomic-scale species to increase the synthesis efficiency and precision of FAMCs.

6.
J Hazard Mater ; 470: 134186, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574664

RESUMO

The pervasive presence of nanoplastics (NPs) in environmental media has raised significant concerns regarding their implications for environmental safety and human health. However, owing to their tiny size and low level in the environment, there is still a lack of effective methods for measuring the amount of NPs. Leveraging the principles of Mie scattering, a novel approach for rapid in situ quantitative detection of small NPs in low concentrations in water has been developed. A limit of detection of 4.2 µg/L for in situ quantitative detection of polystyrene microspheres as small as 25 nm was achieved, and satisfactory recoveries and relative standard deviations were obtained. The results of three self-ground NPs showed that the method can quantitatively detect the concentration of NPs in a mixture of different particle sizes. The satisfactory recoveries (82.4% to 110.3%) of the self-ground NPs verified the good anti-interference ability of the method. The total concentrations of the NPs in the five brands of commercial bottled water were 0.07 to 0.39 µg/L, which were directly detected by the method. The proposed method presents a potential approach for conducting in situ and real-time environmental risk assessments of NPs on human and ecosystem health in actual water environments.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Poliestirenos/química , Microplásticos/análise , Nanopartículas/química , Água Potável/análise , Água Potável/química , Microesferas , Tamanho da Partícula , Limite de Detecção , Espalhamento de Radiação
7.
Int J Biol Macromol ; 261(Pt 2): 129922, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309403

RESUMO

Ecological retanning agent is an effective way to solve the pollution source of leather manufacturing industry. In this study, the gelatin from chrome-containing leather shavings in the leather industry was used to realize sustainable leather post-tanning. The gelatin hydrolysate (GH) coordinated with Zr4+ or Al3+ to prepare eco-friendly retanning agents GH-Zr and GH-Al. The successful coordination between GH and metal ions was characterized by FTIR and XPS. The retanning agents were characterized by FTIR curve-fitting and circular dichroism spectroscopy. The results showed that the conformation of the secondary structure of the polypeptide became ordered and stable after coordinating with the metal ions. The particle size and weight average molecular weight of the retanning agents were ~1700 nm and ~2100, respectively, measured by nanoparticle size analyzer and gel permeation chromatography (GPC). The retanning agents were applied to retanning of chrome tanned leather and glutaraldehyde tanned leather. The abundant free amino from retanning agents can consume the free formaldehyde. Meanwhile, retanning agents can effectively improve the multiple binding sites, resulting in favorable thickening rate (>110 %) and excellent dye and fatliquor absorption rate with ~99.91 % and ~93.18 %. Thus, this strategy can provide a viable choice for solid leather waste and sustainable development of the leather industry.


Assuntos
Gelatina , Curtume , Alumínio/análise , Zircônio , Íons/análise , Resíduos Industriais/análise
8.
Sci Total Environ ; 919: 170716, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325450

RESUMO

Microplastics (MPs) in aquatic environments provide a new ecological niche that facilitates the attachment of antibiotic-resistance genes (ARGs) and pathogens. However, the effect of particle size on the colonization of antibiotic resistomes and pathogens remains poorly understood. To address this knowledge gap, this study explored the antibiotic resistome and core microbiome on three distinct types of MPs including polyethylene, polypropylene, and polystyrene (PS), with varying sizes of 30, 200, and 3000 µm by metagenomic sequencing. Our finding showed that the ARG abundances of the PS type increased by 4-folds with increasing particle size from 30 to 3000 µm, and significant differences in ARG profiles were found across the three MP types. In addition, the concentrations of ARGs and mobile genetic elements (MGEs) were markedly higher in the MPs than in the surrounding water, indicating their enrichment at these artificial interfaces. Notably, several pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Legionella pneumophila were enriched in MP biofilms, and the co-occurrence of ARGs and virulence factor genes (VFGs)/MGEs suggested the presence of pathogenic antibiotic-resistant microbes with potential mobility. Both redundancy analysis (RDA) and structural equation modeling (SEM) demonstrated that physicochemical properties such as zeta potential, MP size, and contact angle were the most significant contributors to the antibiotic resistome. Strikingly, no significant differences were observed in the health risk scores of the ARG profiles among different sizes and types of MPs. This study expands our knowledge on the impact of MP size on microbial risks, thus enhancing our understanding of the potential health hazards they pose.


Assuntos
Microbiota , Microplásticos , Antibacterianos/farmacologia , Genes Bacterianos , Plásticos , Rios , Poliestirenos/química , Polipropilenos/química
9.
J Hazard Mater ; 467: 133698, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335603

RESUMO

Mangrove leaves have been acknowledged as crucial sink for coastal microplastics (MPs). Whereas, the temporal dynamics of MPs intercepted by mangrove leaves have remained poorly understood. Here, we detected MPs intercepted by submerged and non-submerged mangrove leaves over time and the potential driving factors. Abundance and characteristics of MPs interception by mangrove leaves exhibited dynamic fluctuations, with the coefficient of variation (CV) of submerged mangrove leaves (CV = 0.604; 1.76 n/g to 15.45 n/g) being approximately twofold higher than non-submerged mangrove leaves (CV = 0.377; 0.74 n/g to 3.28 n/g). Partial least squares path model (PLS-PM) analysis further illustrated that MPs abundance on submerged mangrove leaves were negative correlated to hydrodynamic factors (i.e., current velocity and tidal range). Intriguingly, secreted salt as a significantly driver of MPs intercepted by mangrove leaves. Results of this work highlights that MPs intercepted by mangrove leaves is characterized by dynamic fluctuations and reveals the importance of hydrodynamic factors and secreted salt. Overall, this work identifies the pivotal buffering role played by mangrove leaves in intercepting MPs, which provides basic knowledge for better understanding of microplastic pollution status and control from mangrove plants.


Assuntos
Microplásticos , Plásticos , Hidrodinâmica , Cloreto de Sódio , Transporte Biológico , Nonoxinol
10.
Foods ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254504

RESUMO

The microbial composition and volatile components of fermented grains (FG) and pit mud (PM) are crucial for the quality and flavor of compound-flavor baijiu (CFB). The physicochemical indices, culturable microorganisms, microbial communities, and volatile components of FG and PM were analyzed and correlated in our research. Considering FG and PM, amplicon sequencing was used to analyze the microbial community and the volatile components were detected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME). For FG, redundancy analysis and correlation perfume Circos were used to clarify the correlations between the dominant microbial community and volatile components. The results showed that Aspergillus, Pichia, and Rhizopus were the main fungal microflora in FG and PM, whereas Lactobacillus and Bacillus were the dominant bacteria in FG, and Methanosarcina and Clostridium sensu stricto 12 were the dominant bacteria in the PM. The microbial community and volatile compounds in the CB sampled from the bottom layers of the FG were greatly affected by those in the PM. There were 32 common volatile components in CB and PM. For FG, most of the volatile components were highly correlated with Lactobacillus, Bacillus, Aspergillus, Pichia, and Monascus, which includes alcohols, acids and esters. This study reveals correlations between microbial composition, volatile components, and the interplay of FG and PM, which are conducive to optimizing the fermentation process and improving the quality of CFB base.

11.
Water Res ; 249: 120995, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071907

RESUMO

Myriad inherent and variable environmental features are controlling the assembly and succession of bacterial communities colonizing on mangrove microplastics (MPs). However, the mechanisms governing mangrove MPs-associated bacterial responses to environmental changes still remain unknown. Here, we assessed the dissimilarities of MPs-associated bacterial composition, diversity and functionality as well as quantified the niche variations of each taxon on plastispheres along river-mangrove-ocean and mangrove landward-to-seaward gradients in the Beibu Gulf, China, respectively. The bacterial richness and diversity as well as the niche breadth on mangrove sedimentary MPs dramatically decreased from landward to seaward regions. Characterizing the niche variations linked the difference of ecological drivers of MPs-associated bacterial populations and functions between river-mangrove-ocean (microplastic properties) and mangrove landward-to-seaward plastispheres (sediment physicochemical properties) to the trade-offs between selective stress exerted by inherent plastic substrates and microbial competitive stress imposed by environmental conditions. Notably, Rhodococcus erythropolis was predicted to be the generalist species and closely associated to biogeochemical cycles of mangrove plastispheres. Our work provides a reliable pathway for tackling the hidden mechanisms of environmental factors driving MPs-associated microbe from perspectives of niches and highlights the spatial dynamic variations of mangrove MPs-associated bacteria.


Assuntos
Microplásticos , Áreas Alagadas , Plásticos , Bactérias , China
12.
Front Microbiol ; 14: 1272559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965554

RESUMO

Introduction: While the variation in physicochemical parameters, microbial communities, metabolism, composition, and the proportion of volatile components in fermented grains (FG) affect final Baijiu quality, their complex interactions during the ultra-long fermentation of compound-flavor Baijiu (CFB) are still poorly understood. Methods: In this study, amplicon sequencing was used to analyze the microbial community, and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile components in FG during ultra-long fermentation of CFB. The relationships between the dominant microbial communities, physicochemical parameters, and volatile components were analyzed using redundancy analysis and network analysis. Results: During ultra-long fermentation, bacterial diversity was initially higher than during the mid and late stages. Fungal diversity in the mid stages was higher than that initially and later in the process. A total of 88 volatile components, including six alcohols, 43 esters, eight aldehydes and ketones, 13 acids, and 18 other compounds were detected in FG. Starch and reducing sugars in FG strongly affected the composition and function of bacterial and fungal communities. However, acidity had little effect on the composition and function of the bacterial flora. Lactobacillus, Bacillus, Weissella, and Pichia were the core microbial genera involved in metabolizing the volatile components of FG. Discussion: We provide insights into the relationships and influences among the dominant microbial communities, physicochemical parameters, and volatile components during ultra-long fermentation of CFB. These insights help clarify the fermentation mechanisms of solid-state fermentation Baijiu (SFB) and control and improve the aroma quality of CFB.

13.
Water Res ; 245: 120574, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690412

RESUMO

Microplastics (MPs) ubiquitous in environments promote the dissemination of antibiotic resistance genes (ARGs), threatening ecosystem safety and human health. However, quantitative assessments of the health risks of ARGs (HRA) in plastisphere and an in-depth exploration of their driving mechanisms are still lacking. Here, the microbiomes, ARGs, and community assembly processes of five types of MPs in an urbanizing watershed were systematically investigated. By fully considering the abundance, clinical availability, human pathogenicity, human accessibility, and mobility of 660 ARGs in plastisphere, the HRA on MPs were quantified and compared. Polyethylene had the highest HRA among the five MP types, and urbanization further increased its risk index. In addition to abiotic factors, more complex biotic factors have been shown to drive HRA in plastisphere. Specifically, dispersal limitation accounted for the increasing diversity and interaction of bacteria that determined HRA in plastisphere. Further analysis of metabolic functions indicated that a higher HRA was accompanied by decreased normal metabolic functions of plastisphere microbiota due to the higher fitness costs of ARGs. This study advances the quantitative surveillance of HRA in plastisphere and understanding of its driving mechanisms. This will be helpful for the management of both MPs and ARGs treatments for human health.


Assuntos
Genes Bacterianos , Microbiota , Humanos , Plásticos , Antibacterianos , Bactérias/genética , Microplásticos , Microbiota/genética
14.
Sci Total Environ ; 899: 165611, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478953

RESUMO

Mangrove sediment is acknowledged as the critical sink of microplastics (MPs). However, the potential effect of mangrove root systems on the MPs migration in sediment remains largely unknown. Here, our study characterized the spatial distribution of MPs trapped in root hair, rhizosphere, and non-rhizosphere zones, and analyzed their correlations with physicochemical properties of sediments. The significantly increased MPs abundances toward root systems shed light on the distinct effect on the migration of MPs exerted by mangrove root systems. Partial least squares path modeling (PLS-PM) analysis revealed that pore water content and pH influenced the abundances of different MP characteristics (shape, color, size, and type) and further promoted the accumulation of MPs toward the root systems. In different mangrove areas from landward to seaward, other sediment properties (median grain size, clay content, and salinity) also controlled MP distribution. Additionally, smaller-sized MPs (<1000 µm) were more easily transported to the root systems. Our study emphasizes the importance of considering root systems effect when investigating the mechanisms of MPs distribution and migration in mangrove sediments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Plásticos , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
15.
ACS Appl Mater Interfaces ; 15(29): 34922-34930, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459462

RESUMO

The graphite/lithium metal hybrid anode shows great potential for achieving high-specific-energy lithium batteries. Despite the "dead lithium" problem caused by repeated stripping and deposition of Li component based on a conversion reaction, the degradation mechanism, based on intercalation reaction, of graphite in a hybrid anode is generally ignored. In this contribution, through in situ X-ray diffraction and in situ Raman analysis, we reveal that hysteresis and the mixed-phase state of graphite during deintercalation play a critical role in hybrid battery degradation. On the other hand, we successfully mitigated graphite degradation and increased the reversible capacity of the hybrid anode by introducing an inorganic-rich solid electrolyte interface. Remarkably, the hybrid anode (30% higher specific capacity compared to graphite) exhibits an average coulombic efficiency of 99.11% and retains 96.13% of initial capacity over 120 cycles. This work sheds new light on the advancement of high-specific-energy lithium secondary batteries.

16.
J Hazard Mater ; 459: 132137, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499500

RESUMO

Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental
17.
Epilepsia Open ; 8(4): 1576-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37418349

RESUMO

Dravet syndrome (DS), previously known as severe myoclonic epilepsy in infancy (SMEI), is considered the most serious "epileptic encephalopathy." Here, we present a man with a de novo SCN1A mutation who was diagnosed with DS at the age of 29. In addition to pharmaco-resistant seizures and cognitive delay, he also developed moderate to severe motor and gait problems, such as crouching gait and Pisa syndrome. Moreover, it deteriorated significantly following an epileptic seizure. The patient presented with severe flexion of the head and trunk in the sagittal plane and fulfilled the diagnostic criteria for camptocormia and antecollis. After a week, it spontaneously alleviated partially. We applied levodopa to the patient and had a good response. Functional Gait Assessment (FGA) was assessed at three different times: 4 days after the seizure, 1 week after the seizure, and after taking levodopa for 2 years. The results were 4, 12, and 19 points, respectively. We postulated that: (1) gait and motor deficits are somehow influenced by recurrent epileptic episodes;(2) the nigrostriatal dopamine system is involved. To our knowledge, we were the ones who first reported this phenomenon.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Masculino , Humanos , Adulto , Levodopa/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Mutação , Epilepsias Mioclônicas/genética , Convulsões/genética , Marcha
18.
Food Chem ; 428: 136802, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421661

RESUMO

Diflubenzuron is widely used as a benzoylurea insecticide, and its impact on human health should not be underestimated. Therefore, the detection of its residues in food and the environment is crucial. In this paper, octahedral Cu-BTB was fabricated using a simple hydrothermal method. It served as a precursor for synthesizing Cu/Cu2O/CuO@C with a core-shell structure through annealing, creating an electrochemical sensor for the detection of diflubenzuron. The response of Cu/Cu2O/CuO@C/GCE, expressed as ΔI/I0 exhibited a linear correlation with the logarithm of the diflubenzuron concentration ranging from 1.0 × 10-4 to 1.0 × 10-12 mol·L-1. The limit of detection (LOD) was determined to be 130 fM using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated excellent stability, reproducibility, and anti-interference properties. Moreover, Cu/Cu2O/CuO@C/GCE was successfully employed to quantitatively determine diflubenzuron in actual food samples (tomato and cucumber) and environmental samples (Songhua River water, tap water, and local soil) with good recoveries. Finally, the possible mechanism of Cu/Cu2O/CuO@C/GCE for monitoring diflubenzuron was thoroughly investigated.


Assuntos
Diflubenzuron , Humanos , Reprodutibilidade dos Testes , Cobre/química , Água , Técnicas Eletroquímicas/métodos , Eletrodos
19.
Nano Lett ; 23(11): 4908-4915, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37216428

RESUMO

The electrocatalytic conversion of polysulfides is crucial to lithium-sulfur batteries and mainly occurs at triple-phase interfaces (TPIs). However, the poor electrical conductivity of conventional transition metal oxides results in limited TPIs and inferior electrocatalytic performance. Herein, a TPI engineering approach comprising superior electrically conductive layered double perovskite PrBaCo2O5+δ (PBCO) is proposed as an electrocatalyst to boost the conversion of polysulfides. PBCO has superior electrical conductivity and enriched oxygen vacancies, effectively expanding the TPI to its entire surface. DFT calculation and in situ Raman spectroscopy manifest the electrocatalytic effect of PBCO, proving the critical role of enhanced electrical conductivity of this electrocatalyst. PBCO-based Li-S batteries exhibit an impressive reversible capacity of 612 mAh g-1 after 500 cycles at 1.0 C with a capacity fading rate of 0.067% per cycle. This work reveals the mechanism of the enriched TPI approach and provides novel insight into designing new catalysts for high-performance Li-S batteries.

20.
J Hazard Mater ; 445: 130636, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056008

RESUMO

Mangroves receive microplastics (MPs) from terrestrial, marine and atmospheric sources, acting as a huge filter for environmental MPs between land and sea. Due to the high primary production and complex hydrodynamic conditions in mangroves, MPs are extensively intercepted in various ways while flowing through mangroves, leading to a long-standing but fiercely increasing MPs accumulation. However, current researches mainly focused on the occurrence, source and fate of MPs pollution in mangroves, ignoring the role of mangrove forests in the interception of MPs. Our study firstly demonstrates that mangrove ecosystems have significantly greater MPs interception capacity than their surrounding environments. Then, the current status of studies related to the interception of MPs in mangrove ecosystems is comprehensively reviewed, with the main focus on the interception process and mechanisms. At last, the most pressing shortcomings of current research are highlighted regarding the intercepted flux, interception mechanisms, retention time and ecological risks of MPs in mangrove ecosystems and the relevant future perspectives are provided. This review is expected to emphasize the critical role of mangrove forests in the interception of MPs and provide the foundational knowledge for evaluating the MPs interception effect of mangrove forests globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA