Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101084, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757055

RESUMO

Neuroanatomical tract tracers are important for studying axoplasmic transport and the complex interconnections of the nervous system. Though traditional fluorescent tracers are widely used, they have several prominent drawbacks when imaging, including low resolutions and low tissue penetrations and inability to be supervised dynamically within a long peripheral nerve during the long term. Here, we explored the potential of ICG as a neural tracer for axoplasmic transport and for the first time demonstrated that ICG could be used to detect transport function within peripheral nerve by near-infrared region II (NIR-II) imaging. On basis of this finding, a novel bi-directional neural tracer biotinylated dextran amine-indocyanine green (BDA-ICG) was prepared and characterized with better long-term stability and higher nerve-to-background ratio than ICG in vivo, and successfully imaged the injured peripheral nerve from the healthy one within 24 h. Our results show that BDA-ICG are promising neural tracers and clinically available dyes with NIR-II emission tail characteristics as ICG.

2.
Exp Neurol ; 377: 114783, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688418

RESUMO

The structural and functional features of lymphatic vessels in the peripheral nervous system (pLVs) is still unclear. Here, we clarify the existence of pLVs in rats, PROX1-EGFP transgenic mice and human, and exhibit a clear three-dimensional structure for helping understand its structural features. Moreover, two specific phenotypes of lymphatics endothelial cells (Rnd1Hi LECs and Ccl21Hi LECs) in peripheral nerves are well characterized by single-cell sequencing. Subsequently, the ability of trans-lymphatic delivery to peripheral nerves via pLVs has been dynamically demonstrated. After peripheral nerve injury (PNI), extensive lymphangiogenesis occurs in the lesion area and further enhances the efficiency of retrograde lymphatic-nerve transport. In PNI animal models, subcutaneously footpad-injected exosomes are efficiently delivered to sciatic nerve via pLVs which can promote nerve regeneration. The trans-lymphatic delivery to peripheral nerves via pLVs can subtly bypass BNB which provides an easy and alternative delivery route for PNI treatment.


Assuntos
Vasos Linfáticos , Camundongos Transgênicos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Regeneração Nervosa/fisiologia , Vasos Linfáticos/fisiologia , Camundongos , Traumatismos dos Nervos Periféricos/patologia , Ratos , Humanos , Sistema Nervoso Periférico , Ratos Sprague-Dawley , Masculino , Nervo Isquiático/fisiologia , Nervo Isquiático/lesões , Linfangiogênese/fisiologia , Células Endoteliais/fisiologia , Exossomos/metabolismo
4.
J Nanobiotechnology ; 21(1): 10, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624511

RESUMO

BACKGROUND: Schwann cells (SCs) respond to nerve injury by transforming into the repair-related cell phenotype, which can provide the essential signals and spatial cues to promote axonal regeneration and induce target reinnervation. Endothelial cells (ECs) contribute to intraneural angiogenesis contributing to creating a permissive microenvironment. The coordination between ECs and SCs within injury sites is crucial in the regeneration process, however, it still unclear. As the intercellular vital information mediators in the nervous system, exosomes have been proposed to take a significant role in regulating regeneration. Thus, the main purpose of this study is to determine the facilitative effect of ECs-derived exosomes on SCs and to seek the underlying mechanism. RESULTS: In the present study, we collected exosomes from media of ECs. We demonstrated that exosomes derived from ECs possessed the favorable neuronal affinity both in vitro and in vivo. Further research indicated that EC-exosomes (EC-EXO) could boost and maintain repair-related phenotypes of SCs, thereby enhancing axonal regeneration, myelination of regenerated axons and neurologically functional recovery of the injured nerve. MiRNA sequencing in EXO-treated SCs and control SCs indicated that EC-EXO significantly up-regulated expression of miR199-5p. Furthermore, this study demonstrated that EC-EXO drove the conversion of SC phenotypes in a PI3K/AKT/PTEN-dependent manner. CONCLUSION: In conclusion, our research indicates that the internalization of EC-EXO in SCs can promote nerve regeneration by boosting and maintaining the repair-related phenotypes of SCs. And the mechanism may be relevant to the up-regulated expression of miR199-5p and activation of PI3K/AKT/PTEN signaling pathway.


Assuntos
Células Endoteliais , Exossomos , MicroRNAs , Regeneração Nervosa , Células de Schwann , Exossomos/metabolismo , Regeneração Nervosa/fisiologia , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann/metabolismo
5.
Connect Tissue Res ; 64(3): 274-284, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36537662

RESUMO

AIM: Emerging data have demonstrated that low-grade inflammation in osteoarthritis, a long-held degenerative disease. The inflamed synovium produces various cytokines that induce cartilage destruction and joint pain. A previous study showed that teriparatide, an FDA approved anti-osteoporotic drug, may enhance cartilage repair. Our study focuses on its role in OA synovitis. MATERIALS AND METHODS: Primary mouse articular chondrocytes were used to determine the most potent cytokines involved in OA inflammation and cartilage destruction. A destabilization of the medial meniscus mouse model was established to investigate the effect of teriparatide in OA, particularly, on synovial inflammation and cartilage degradation. RESULTS: In vitro experiments showed that TNF-α was the most potent inducer of cartilage matrix-degrading enzymes, and that teriparatide antagonized the TNF-α of effect. Consistently, articular cartilage samples from TNF-α transgenic mice contained more MMP-13 positive chondrocytes than those from wild type mice. In addition, more type II collagen was cleaved in human OA cartilage than in normal cartilage samples. CONCLUSIONS: Teriparatide can prevent synovitis and cartilage degradation by suppressing TNF-α mediated MMP-13 overexpression. Together with its chondroregenerative capability, teriparatide may be the first effective disease modifying osteoarthritis drug.


Assuntos
Cartilagem Articular , Osteoartrite , Sinovite , Humanos , Camundongos , Animais , Teriparatida/farmacologia , Teriparatida/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Cartilagem/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Modelos Animais de Doenças , Sinovite/tratamento farmacológico , Camundongos Transgênicos , Citocinas/metabolismo , Cartilagem Articular/metabolismo
6.
Mikrochim Acta ; 189(9): 338, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980479

RESUMO

A zirconium-cobalt metal-organic framework (ZrCo-MOF) was prepared and used as sensing material to fabricate an aptasensor for trace detection of carcinoembryonic antigen (CEA). The ZrCo-MOF integrates the 3D porous structure and abundant defects of the MOF framework, the catalytic activity and inherent redox behavior of Co, and high stability of Zr-MOF, providing abundant active sites to effectively anchor aptamers. As a result, the ZrCo-MOF-based aptasensor shows high sensitivity to detect CEA via specific recognition between aptamer and CEA, as well as the formation of aptamer-CEA complex. A detection limit of 0.35 fg·mL-1 was deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.001-100 pg·mL-1 for CEA, which was substantially lower than those of most reported CEA biosensors. The ZrCo-MOF-based aptasensor also shows good selectivity, reproducibility, regenerability, stability, and applicability for human serum sample. Therefore, the developed ZrCo-MOF-based aptasensor will be promising for ultrasensitive detection of biomarkers and the early diagnosis of cancer. This work presents a novel electrochemical aptasensor for the trace detection of carcinoembryonic antigen (CEA) based on a zirconium-cobalt metal-organic framework (ZrCo-MOF), which shows low detection limit of 0.35 fg·mL-1, high selectivity as well as good reproducibility, regenerability, stability, and applicability. The result provides a promising approach to detect the cancer biomarkers in an early age.


Assuntos
Aptâmeros de Nucleotídeos , Estruturas Metalorgânicas , Aptâmeros de Nucleotídeos/química , Antígeno Carcinoembrionário , Cobalto , Humanos , Limite de Detecção , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes , Zircônio/química
7.
Cell Transplant ; 31: 9636897221082687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35287482

RESUMO

Glucocorticoid (GC)-induced avascular osteonecrosis of femoral head (AOFH) is a devastating complication, and no cures are currently available for it. Previous studies have demonstrated that implantation of bone marrow mesenchymal stem cells (BMMSCs) may prevent the progression of pre-collapse AOFH. Based on previous observations, we hypothesized that GCs induce AOFH via the COX-2 (cyclooxygenase-2)-PGE-2 (prostaglandin E2)-HIF-1α (hypoxia-inducible factor-1α) axis, and that modification of BMMSCs may improve the efficacy of their implantation. BMMSCs isolated from wild-type (WT) mice were treated with dexamethasone (Dex) and the results showed that Dex repressed the expression of COX-2. Femoral head samples harvested from both WT and COX-2 knock-out (COX-2-/-) mice were subjected to micro-computed tomography and histological examinations. Compared with their WT littermates, COX-2-/- mice had larger trabecular separations, diminished microvasculature, and reduced HIF-1α expression in their femoral heads. In vitro angiogenesis assays with tube formation and fetal metatarsal sprouting demonstrated that Dex repressed angiogenesis and PGE-2 antagonized its effects. An AOFH model was successfully established in C57BL/6J mice. In vitro experiment showed that BMMSCs infected with Lentivirus encoding HIF-1α (Lenti-HIF-1α) resulted in a robust increase in the production of HIF-1α protein. Implantation of BMMSCs overexpressing HIF-1α into femoral heads of AOFH mice significantly reduced osteonecrotic areas and enhanced bone repair, thus largely preserving the structural integrity of femoral heads. Our studies provide strong rationales for early intervention with core decompression and implantation of modified BMMSCs for GC-induced AOFH, which may spare patients from expensive and difficult surgical procedures.


Assuntos
Necrose da Cabeça do Fêmur , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/terapia , Glucocorticoides , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prostaglandinas E/efeitos adversos , Prostaglandinas E/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA