Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38590166

RESUMO

Photosynthesis is a major trait of interest for development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars 'LY66', 'MC670', and 'JK968', we here conducted a two-year field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at four planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. Physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved pre-silking biomass transfer, especially in the lower canopy. Yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.

2.
Nat Commun ; 15(1): 1640, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388531

RESUMO

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Assuntos
Deficiência Intelectual , RNA , Estilbenos , Ácidos Sulfônicos , Humanos , Animais , Camundongos , RNA/metabolismo , Deficiência Intelectual/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Transporte de RNA , Mamíferos/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2693-2702, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897276

RESUMO

Clarifying the effect of different maize straw returning methods on soil temperature is crucial for optimizing the management of farmland straw and the efficient utilization of heat resources in the black soil region of Northeast China. To investigate the impacts of straw returning methods on soil temperature, we conducted a field experiment with four treatments during 2018 and 2020, including plough tillage with straw returning (PTSR), rotary tillage with straw returning (RTSR), no-tillage with straw returning (NTSR), and a control treatment of conventional ridge tillage without straw returning (CT). We measured soil temperature and water content at the 5 cm, 15 cm and 30 cm soil layer, and the straw coverage rate during the 3-year maize growth period. We further analyzed the differences of soil temperature in different soil layer under different treatments, accumulated soil temperature and growing degree-days (GDD) above 10 ℃, daily dynamics of soil temperature, the production efficiency of air accumulated temperature among different treatments, and explored factors causing the difference of soil temperature and the production efficiency of air accumulated temperature. Our results showed that different treatments mainly affected soil temperature from the sowing to emergence stage (S-VE) of maize. The daily average soil temperature showed a trend of CT>PTSR>RTSR>NTSR. The differences of soil temperature under different treatments showed a decreasing trend as growth process advanced and soil depth increased. Compared with the CT treatment, soil temperature at 5 cm depth was decreased by 0.86, 1.84 and 3.50 ℃ for PTSR, RTSR, and NTSR treatments, respectively. NTSR significantly reduced the accumulated temperature of ≥10 ℃ in different soil layers and GDD. The accumulated temperature ≥ 10 ℃ at the 5, 15, and 30 cm soil layers decreased by 216.2, 222.7, and 165.1 ℃·d, and the GDD decreased by 201.9, 138.7 and 123.9 ℃·d, respectively. In addition, production efficiency of air accumulated temperature decreased by 9.7% to 15.6% for NTSR. Conclusively, PTSR and RTSR had significant impacts on topsoil temperature during the maize growing period from sowing to emergence, but did not affect the accumulated soil temperature and the production efficiency of air accumulated temperature. However, NTSR significantly reduced topsoil temperature and production efficiency of air accumulated temperature.


Assuntos
Agricultura , Solo , Agricultura/métodos , Zea mays , Temperatura , Triticum , China
4.
Plants (Basel) ; 12(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765433

RESUMO

Understanding the water status of specific organs can be helpful in evaluating the life activities and growth conditions of maize. To accurately judge organ growth conditions and thus design appropriate interventions, it is necessary to clarify the true water dynamics of each maize organ. Using multiple maize cultivars with different growth periods, spatio-temporal water dynamics were analyzed here in the leaves, stalks, and ear components. Leaf water content was found to gradually decrease from both the bottom and top of the plant to the middle, whereas stalk water content decreased sequentially from the top to the bottom. Each successively higher node from the bottom of the plant was associated with decreases of 0.99% and 1.27% water content in the leaves and stalks, respectively. The water dynamics in leaves and internodes showed three clear stages: the slow loss, rapid loss, and balance stage. A water content of 60% appeared to be an irreversible turning point for initiation of senescence. Using normalized growth period as a measure, each of the tested cultivars could be assigned into one of two types based on their water dynamics: stay-water or general type. General-type cultivars had a shorter duration with a high water content and a water loss rate approximately twice as high as that of the stay-water type. This may have been related to the leaf senescence characteristics. However, the stay-water trait did not interfere with water dynamics of the ear components. Therefore, it may not be robust to evaluate the kernel dehydration of maize according to leaf senescence conditions due to the weak correlation between kernel water content and leaf senescence characteristics.

5.
Sci Total Environ ; 883: 163507, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37059139

RESUMO

Increasing crop yields to ensure food security while also reducing agriculture's environmental impacts to ensure green sustainable development are great challenges for global agriculture. Plastic film, widely used to improve crop yield, also creates plastic film residue pollution and greenhouse gas emissions that restricts the development of sustainable agriculture. So, one of those challenges is to reduce plastic film use while also ensuring food security, and thus promote green and sustainable development. A field experiment was conducted during 2017-2020 at 3 farmland areas, each with different altitudes and climate conditions, in northern Xinjiang, China. We investigated the effects on maize yield, economic returns, and greenhouse gas (GHG) emissions of plastic film mulching (PFM) versus no mulching (NM) methods in drip-irrigated maize production. We also chose maize hybrids with 3 different maturation times and used 2 planting densities to further investigate how those differences more specifically affect maize yield, economic returns, and greenhouse gas (GHG) emissions under each mulching method. We found that by using maize varieties with a utilization rate of accumulated temperature (URAT) <86.6 % with NM, and increasing the planting density by 3 plants m-2, yields and economic returns improved and GHG emissions reduced by 33.1 %, compared to those of PFM maize. The maize varieties with URATs between 88.2 % to 89.2 %, had the lowest GHG emissions. We discovered that by matching the required accumulated temperatures of various maize varieties to environmental accumulated temperatures, along with filmless and higher density planting, and modern irrigation and fertilization practices, yields increased and residual plastic film pollution and carbon emissions reduced. Therefore, these advances in agronomic management are important steps toward reducing pollution and achieving carbon peak and carbon neutrality goals.


Assuntos
Gases de Efeito Estufa , Zea mays , Carbono , Solo/química , Gases de Efeito Estufa/análise , Plásticos , Agricultura/métodos , Segurança Alimentar , China , Fertilizantes
6.
J Sci Food Agric ; 103(10): 5061-5069, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990972

RESUMO

BACKGROUND: Global warming has led to methods of planting late-maturing maize varieties in northeast China that have hindered the development of physiological maturity (PM) at harvest and the use of mechanical grain harvesting (MGH). Under these conditions it is difficult to balance the drying characteristics of maize varieties and to make full use of accumulated temperature resources in such a way as to reduce grain moisture content (GMC) at harvest. RESULTS: The effective accumulated temperature (AcT) and the drying rates of different varieties vary. In northeast China, with a GMC of 25%, the growth periods of a fast-drying variety (FDV) and a slow-drying variety (SDV) were 114-192 days and 110-188 days respectively. After PM, the FDV needed 47 days and the SDV needed 51 days to reduce the GMC to be ready for MGH. Harvested with a GMC of 20%, the growth period for the FDV was 97-175 days and for the SDV it was 90-171 days. After PM, the FDV required 64 days and the SDV needed 70 days to reduce the GMC to be ready for MGH. CONCLUSION: Matching cultivars with AcT can help farmers to choose suitable varieties. Promoting MGH may boost maize production, thus ensuring China's food security. © 2023 Society of Chemical Industry.


Assuntos
Grão Comestível , Zea mays , Temperatura , Grão Comestível/química , Aquecimento Global , China
7.
Altern Ther Health Med ; 29(4): 43-51, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947651

RESUMO

Context: Ischemic heart disease is a common disease in older surgical patients. The current treatments for myocardial ischemia mainly restore blood flow to an extent, but reperfusion inevitably causes reperfusion injury. Single-point acupuncture and moxibustion can strengthen the body's resistance and eliminate pathogenic factors, but medical practitioners haven't considered matching acupoints in treatments for myocardial ischemia. Objective: The study intended to examine the effects of electroacupuncture using the Biao and Ben acupoints on the structure and function of myocardial mitochondria, the changes in the expression of related proteins, and the intraoperative circulation of rats with myocardial ischemia and to provide a theoretical basis for the clinical use of the Biao-Ben acupoints. Design: The research team performed an animal study. Setting: The study took place in Lanzhou Maternal and Child Health Hospital. Animals: The animals were 84 male Sprague-Dawley (SD) rats, weighing 160-220 g. Intervention: The research team divided the rats into seven groups, with 12 rats in each group. The study evaluated two types of interventions: (1) zinc chloride (ZnCl2) and (2) electroacupuncture. The team used two versions of each type of intervention, for four groups in total: (1) a low dose of ZnCl2, the low-dose ZnCl2 group; (2) a high dose of ZnCl2, the high-dose ZnCl2 group; (3) electroacupuncture using a single acupoint, the Neiguan point, for the Neiguan group; and (4) electroacupuncture using three acupoints, the Neiguan point and the Biao and Ben points, for the Biao-Ben group. The study included three control groups-the control group, a positive control group; the sham group, a ZnCl2 control group; and the model group, a negative control group. The team collectively called five of the groups the operation group, which included all four intervention groups and the model group, in which the team induced ischemic heart disease. Outcome Measures: The research team measured: (1) the relative changes in the mitochondrial ultrastructure of the rat cardiomyocytes for each group using a laser confocal, fluorescent indicator assay to detect the concentration of calcium(2+) [Ca2+] in the cytoplasm of cardiomyocytes; (2) the content of adenosine triphosphate (ATP) in myocardial tissue using ATP-detection technology; (3) mitochondrial activity using the fluorescent probe method; and (4) the protein levels of P2X purinoceptor 7 (P2X7) and mitochondria-related oxidative stress factors on the myocardial cell membrane using Western blot technology. The team monitored the physiology of the rats in each group. Results: Compared with the model group, the two ZnCl2 groups and the two electroacupuncture groups showed: (1) a significantly improved mitochondrial structure and function of the ischemic cardiomyocytes, (2) a significant increase in the mitochondrial activity, (3) a significant increase in the permeability of the membrane and thus an increase the concentration of Ca2+ in the cytoplasm, (4) a significant increase in the content of ATP inside and outside the myocardium, (5) at the same time, a significant reduction in the protein levels of the P2X7 receptors on the myocardial cell membrane and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and manganese superoxide dismutase (MnSOD) in mitochondria, and (6) a significant reduction in the protein levels of nitric oxide (NO) and cytochrome C (CytC). Conclusions: The Biao and Ben electroacupuncture can improve the structure and function of mitochondria in the myocardial cells of rats with myocardial ischemia, reduce the expression levels of the P2X7 receptor, NO, and CytC proteins, increase the expression levels of PGC-1α and MnSOD, and improve the intraoperative circulation, thus having a positive effect on myocardial ischemia.


Assuntos
Eletroacupuntura , Isquemia Miocárdica , Ratos , Masculino , Animais , Pontos de Acupuntura , Ratos Sprague-Dawley , Cálcio , Isquemia Miocárdica/terapia , Isquemia Miocárdica/metabolismo , Mitocôndrias/metabolismo
8.
Front Plant Sci ; 14: 1006245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844043

RESUMO

Quantifying the effects of various environmental conditions on maize leaf number is essential to understanding the environmental adaptations and population structure of maize plants and for enhancing maize productivity. In this study, seeds of three temperate-adapted maize cultivars, each belonging to different maturity classes, were sown on eight different dates. Sowing dates ranged from the middle of April to early July, which allowed us to cover a wide range of environmental conditions. Random forest regression and multiple regression models with variance partitioning analyses were used to assess the effects of environmental factors on the number of leaves and their distributions on maize primary stems. We demonstrated that the total leaf number (TLN) increased in the three cultivars in the following order: FK139 < JNK728 < ZD958, and variations in TLN for each cultivar were 1.5, 1.76, and 2.75 leaves, respectively. The variation in TLN was ascribed to changes in LB (leaf number below the primary ear), which were higher than variations in LA (leaf number above the primary ear). Variations in TLN and LB were mainly affected by the photoperiod during growth stages V7 to V11, and differences in TLN and LB in response to different photoperiods ranged from 1.34 to 2.95 leaves h-l. Variations in LA was mainly affected by temperature-related factors. Therefore, the results of this study enhanced our current understanding of key environmental conditions that affect maize leaf numbers, and provides scientific support for the benefits of adjusting sowing dates and selecting suitable cultivars to mitigate the effects of climate change on maize production.

9.
Plant Physiol Biochem ; 196: 454-462, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758292

RESUMO

Phyllochron, the reciprocal of the leaf appearance rate, is a critical genetic parameter in crop models for predicting growth characteristics and yield. Previous studies have shown that existing observations and predictive algorithms do not adequately represent a broad range of cultivars and environments. Here, we conducted a series of experiments in the field to quantify and disentangle the effects of sowing date and cultivar on maize leaf collar appearance (LCA). A bilinear model was found to accurately fit maize LCA (R2adj > 0.99); this model revealed a slower rate of LCA for the first leaves compared to the last leaves. Turning points in the model occurred between the 9.2th and the 13.1th leaf, nearly always below the ear leaf and around a leaf age index (LAI) of 60.0%. The phyllochron before the turning point (PHYLL Ⅰ) was significantly higher than the phyllochron after the turning point (PHYLL Ⅱ) for all three maize cultivars, and PHYLL Ⅰ was approximately two times higher than PHYLL Ⅱ on average. Both PHYLL Ⅰ and PHYLL Ⅱ were significantly affected by sowing date and cultivar. Variations in PHYLL Ⅰ and PHYLL Ⅱ indicated strong plasticity in maize phyllochron at different leaf ranks. The results of this study are critical for improvement of maize management practices and extend the applicability of phyllochron-collar measurements in crop models.


Assuntos
Folhas de Planta , Zea mays , Zea mays/genética , Algoritmos
10.
AoB Plants ; 14(6): plac053, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36545299

RESUMO

Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN) important for radiation-use efficiency versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a 10-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N deficiency (N0), low N supply (N1) and high N supply (N2). We analysed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy SLA (specific leaf area, cm2 g-1) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained LA at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude that the main strategy of maize to cope with low N is to maintain LA, mainly by increasing SLA throughout the plant but only during the vegetative growth phase.

11.
Plants (Basel) ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297747

RESUMO

While plastic film mulching and proper high-density planting are important methods that can improve maize yield, years of accumulated residual film have created soil pollution and degraded soil, and thus has impeded sustainable agriculture development. Here, we compared the stalk and root lodging resistances of three maize cultivars grown at two planting densities both with (FM) and without (NM) plastic film mulch. Our aim was to provide a theoretical basis that may help assure a future of successful no-film planting with increased planting density. The results showed that, compared with FM, the average dry weight per unit length and bending strength of basal internode decreased for all cultivars at both planting densities in the NM treatment. At 9.0 × 104 plants ha-1, the stalk breaking force (SFC) of Xinyu77, KWS9384, and KWS2030 in the NM treatment decreased by 4%, 21%, and 22%, respectively. At 12.0 × 104 plants ha-1, SFC of Xinyu77 and KWS2030 increased by 14% and 1%, respectively, while KWS9384 decreased by 10%. Additionally, the root diameter, length, volume, width, depth, and the vertical root-pulling force of maize decreased. Although the lodging resistance of maize grown without film mulch was lower than that of maize grown with it, those adverse effects can be mitigated by selecting suitable cultivars and by using proper high-density planting and appropriate cultivation measures.

12.
J Neurosci ; 42(48): 8936-8947, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36261284

RESUMO

In addition to its role in Alzheimer's disease, amyloid precursor protein (APP) has physiological roles in synapse development and function. APP induces presynaptic differentiation when presented to axons, but the mechanism is unknown. Here we show that APP binds neurexin to mediate this synaptogenic activity. APP specifically binds ß not α neurexins modulated by splice site 4. Binding to neurexin heparan sulfate glycan and LNS protein domains is required for high-affinity interaction and for full-length APP to recruit axonal neurexin. The synaptogenic activity of APP is abolished by triple knockdown of neurexins in hippocampal neurons pooled from male and female rats. Based on these and previous results, our model is that a dendritic-axonal trans dimer of full-length APP binds to axonal neurexin-ß to promote synaptic differentiation and function. Furthermore, soluble sAPPs also bind neurexin-ß and inhibit its interaction with neuroligin-1, raising the possibility that disruption of neurexin function by altered levels of full-length APP and its cleavage products may contribute to early synaptic deficits in Alzheimer's disease.SIGNIFICANCE STATEMENT The prevailing model for the basis of Alzheimer's disease is the amyloid cascade triggered by altered cleavage of amyloid precursor protein (APP). APP also has physiological roles at the synapse, but the molecular basis for its synaptic functions is not well understood. Here, we show that APP binds the presynaptic organizing protein neurexin-ß and that neurexin is essential for the synaptogenic activity of APP. Furthermore, soluble APP forms generated by APP cleavage also bind neurexin-ß and can block interaction with transmembrane synaptogenic ligands of neurexin. These findings reveal a role for neurexin-APP interaction in synapse development and raise the possibility that disruptions of neurexin function may contribute to synaptic and cognitive deficits in the critical early stage of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Masculino , Feminino , Ratos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Neurônios/fisiologia
13.
Front Plant Sci ; 13: 906060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755643

RESUMO

A quantitative understanding of the factors driving changes in grain filling is essential for effective prioritization of increasing maize yield. Grain filling is a significant stage in maize yield formation. Solar radiation is the energy source for grain filling, which is the ultimate driving factor for final grain weight and grain filling capacity that determine maize yield. Here, we first confirmed the quantitative relationships between grain filling parameters and photosynthetically active radiation (PAR) by conducting field experiments using different shading and plant density conditions and cultivars in 2019 and 2020 in Xinjiang, China. The results showed that with every 100 MJ m-2 increase in PAR, the average grain filling rate (G ave), maximum grain-filling rate (G max), and the kernel weight at the time of maximum grain-filling rate (W max) increased by 0.073 mg kernel-1 day-1, 0.23 mg kernel-1 day-1, and 0.24 mg kernel-1, and the time of maximum grain-filling rate (T max) delayed by 0.91 day. Relative changes in PAR were significantly and positively correlated with relative changes in yield and G ave. With every 1% change in PAR, yield and G ave changed by 1.16 and 0.17%, respectively. From the perspective of grain filling capacity, DH618 was a more shade-resistant cultivar than XY335 and ZD958. It is urgent to breed maize cultivars with low light tolerance and high grain yield in the face of climate change, particularly the decrease in solar radiation.

14.
Acad Radiol ; 29(6): 871-879, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34580012

RESUMO

RATIONALE AND OBJECTIVES: To evaluate the efficacy of microwave ablation (MWA) for benign thyroid nodules (BTNs) and compare trauma and complication rates between MWA and traditional thyroidectomy for BTNs. MATERIALS AND METHODS: 84 patients with BTNs were recruited and followed up at 1, 3, 6, and 12months. 56 and 28 patients chose to undergo MWA (group A) and traditional thyroidectomy (group B), respectively. Efficacy was assessed by volume reduction rate (VRR) and therapeutic success rate (TSR) at each follow-up. Trauma was compared using inflammation response parameters, visual analog scale (VAS) scores, quality of life (QOL) and thyroid function measures at 1, 3, and 6 months. Complications rates were also compared. RESULTS: The VRR was 80.70 ± 18.60%, and TSR was 91.70% at 6-months. Furthermore, the VRR increased to 90.45 ± 11.51%, and TSR increased to 100% at 12-months. C-reactive protein levels were significantly higher in group B on the first postoperative day (POD) (3.89 ± 0.86 mg/mL vs 3.39 ± 0.56 mg/mL, p = 0.002). Visual analog scale scores were significantly lower in group A on the first and second POD. Thyroid stimulating hormone levels were significantly lower in group A at three (1.71 ± 1.12uIU/mL vs 2.37 ± 1.24uIU/mL, p = 0.013) and 6-months (1.34 ± 0.70uIU/mL vs 1.97 ± 0.94uIU/mL, p = 0.002). There were no significant between-group differences in QOL and complication rates. CONCLUSION: Microwave ablation shows acceptable and promising efficacy. Compared with thyroidectomy, MWA was associated with less trauma and comparable complication rates.


Assuntos
Ablação por Cateter , Nódulo da Glândula Tireoide , Estudos de Coortes , Humanos , Micro-Ondas/uso terapêutico , Estudos Prospectivos , Qualidade de Vida , Estudos Retrospectivos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/cirurgia , Tireoidectomia , Resultado do Tratamento
15.
Front Plant Sci ; 12: 727134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603357

RESUMO

Solar radiation is the energy source for crop growth, as well as for the processes of accumulation, distribution, and transfer of photosynthetic products that determine maize yield. Therefore, learning the effects of different solar radiation amounts on maize growth is especially important. The present study focused on the quantitative relationships between solar radiation amounts and dry matter accumulations and transfers in maize. Over two continuous years (2017 and 2018) of field experiments, maize hybrids XY335 and ZD958 were grown at densities of 4.5 × 104 (D1), 7.5 × 104 (D2), 9 × 104 (D3), 10.5 × 104 (D4), and 12 × 104 (D5) plants/ha at Qitai Farm (89°34'E, 44°12'N), Xinjiang, China. Shading levels were 15% (S1), 30% (S2), and 50% (S3) of natural light and no shading (CK). The results showed that the yields of the commonly planted cultivars XY335 and ZD958 at S1, S2, and S3 (increasing shade treatments) were 7.3, 21.2, and 57.6% and 11.7, 31.0, and 61.8% lower than the control yields, respectively. Also, vegetative organ dry matter translocation (DMT) and its contribution to grain increased as shading levels increased under different densities. The dry matter assimilation amount after silking (AADMAS) increased as solar radiation and planting density increased. When solar radiation was <580.9 and 663.6 MJ/m2, for XY335 and ZD958, respectively, the increase in the AADMAS was primarily related to solar radiation amounts; and when solar radiation was higher than those amounts for those hybrids, an increase in the AADMAS was primarily related to planting density. Photosynthate accumulation is a key determinant of maize yield, and the contributions of the vegetative organs to the grain did not compensate for the reduced yield caused by insufficient light. Between the two cultivars, XY335 showed a better resistance to weak light than ZD958 did. To help guarantee a high maize yield under weak light conditions, it is imperative to select cultivars that have great stay-green and photosynthetic efficiency characteristics.

16.
Photosynth Res ; 150(1-3): 295-311, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34032983

RESUMO

In this work, we sought to understand how breeding has affected photosynthesis and to identify key photosynthetic indices that are important for increasing maize yield in the field. Our 2-year (2017-2018) field experiment used five high-yielding hybrid maize cultivars (generated in the 1970s, 2000s, and 2010s) and was conducted in the Xinjiang Autonomous Region of China. We investigated the effects of planting density on maize grain yield, photosynthetic parameters, respiration, and chlorophyll content, under three planting density regimens: 75,000, 105,000, and 135,000 plants ha-1. Our results showed that increasing planting density to the medium level (105,000 plants ha-1) significantly increased grain yield (Y) up to 20.32% compared to the low level (75,000 plants ha-1). However, further increasing planting density to 135,000 plants ha-1 did not lead to an additional increase in yield, with some cultivars actually exhibiting an opposite trend. Interestingly, no significant changes in photosynthetic rate, dark respiration, stomatal density, and aperture were observed upon increasing planting density. Moreover, our experiments revealed a positive correlation between grain yield and the net photosynthetic rate (Pn) upon the hybrid release year. Compared to other cultivars, the higher grain yield obtained in DH618 resulted from a higher 1000-kernel weight (TKW), which can be explained by a longer photosynthetic duration, a higher chlorophyll content, and a lower ratio of chlorophyll a/b. Moreover, we found that a higher leaf area per plant and the leaf area index (HI) do not necessarily result in an improvement in maize yield. Taken together, we demonstrated that higher photosynthetic capacity, longer photosynthetic duration, suitable LAI, and higher chlorophyll content with lower chlorophyll a/b ratio are important factors for obtaining high-yielding maize cultivars and can be used for the improvement of maize crop yield.


Assuntos
Fotossíntese , Zea mays , China , Clorofila A , Folhas de Planta , Zea mays/genética
17.
Life (Basel) ; 11(5)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923073

RESUMO

Panax ginseng C. A. Meyer is a kind of renascent herb that belongs to the genus Panax in the family Araliaceae. It is a traditional Chinese precious herbal medicine with a long history of medicinal use. Ginsenoside Rb3 is one of the important active ingredients in ginseng and has important physiological activity in the treatment of many diseases. In this study, we screened and systematically analyzed the candidate genes related to ginsenoside Rb3 synthesis through bioinformatics methods; discussed the functions, expression patterns, and interactions of the genes related to ginsenoside Rb3 synthesis; and finally, selected seven genes, mainly PgRb3, that directly contribute to the synthesis of ginsenoside Rb3. This study provides a reference for revealing the expression rules of ginsenoside Rb3 synthesis-related genes and elucidating the regulatory mechanism of methyl jasmonate, lays a theoretical foundation for the research of ginsenoside Rb3 synthesis, and provides theoretical and technical support for the factory production of ginsenoside monomer saponins.

18.
Med Sci Monit ; 26: e927368, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33281184

RESUMO

BACKGROUND Dickkopf Wnt signaling pathway inhibitor (DKK) gene family, which is known to inhibit the Wnt regulation process, is widely found in cancers. However, the roles and functions of specific family members in head and neck squamous cell carcinoma (HNSCC) are still unclear. MATERIAL AND METHODS Online bioinformatics tools (Oncomine, UALCAN, Kaplan-Meier plotter, GEPIA, Metascape, and STRING) were used to analyze the relationships between distinct DKKs and HNSCC. The transcriptome expression, clinical association, functions, pathways, and protein-protein interaction networks of DKKs in HNSCC were explored. RESULTS The mRNA expression of DKK1, DKK3, and Dickkopf-like acrosomal protein 1 (DKKL1) in HNSCC was significantly higher than in normal tissues, while that of DKK4 was lower. The mRNA expression of DKK1, DKK3, and DKKL1 was elevated in higher-grade HNSCC. The mRNA expression of DKK1 and DKK3 was elevated in human papillomavirus (HPV)-negative HNSCC, while DKKL1 had a higher mRNA expression in HPV-positive HNSCC. In addition, DKK1 was significantly associated with unfavorable overall survival in HNSCC patients. DKK3 was more likely to be a negative factor for the 5-year survival rate, while DKK4 was the opposite. DKK1 function was mainly enriched in GTPase-mediated signal transduction. Porcupine O-acyltransferase, a key regulator of the Wnt signaling pathway, was also associated with DKK1 in the protein-protein interaction network. CONCLUSIONS With regard to improving the therapeutic strategies of HNSCC in the future, DKK1 could be an unfavorable prognostic biomarker. DKK3, DKK4, and DKKL1 might be potential biomarkers for HNSCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias de Cabeça e Pescoço/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Família Multigênica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Prognóstico , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
19.
Plant Methods ; 16(1): 148, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33292355

RESUMO

BACKGROUND: The accurate evaluation of the stalk-lodging resistance during the late stage of maize growth can provide a basis for the selection of cultivars, the evaluation of cultivation techniques, and timely mechanical grain harvesting. In this study, the critical wind speed of stalk breaking, plant morphology, stalk mechanical strength, and lodging rate were investigated in 10 maize cultivars to identify the parameters evaluate lodging resistance during the later growth stage of maize. Clarify the relationship with the stalk mechanical strength, critical wind speed of stalk breaking, and natural lodging rate in the field. RESULTS: The results showed that, in the late growth stage, with increasing number of days after physiological maturity, (1) the stalk lodging rate gradually increased, (2) the stalk breaking force and rind penetration strength (RPS) of the third internode above the soil gradually decreased, and (3) the critical wind speed of stalk breaking increased first and then decreased, and was highest at about 16-24 days after physiological maturity. The position of stalk lodging mostly occurred between second and fifth internodes. The torque at the base of maize plant increased as wind speed increased, and the different of torque was excited among different maize cultivars under same wind speed. Furthermore, the stalk lodging rate was significantly negatively correlated with the critical wind speed of stalk breaking. Additionally, the critical wind speed of stalk breaking was significantly positively correlated with the stalk breaking force and the RPS. CONCLUSION: This indicates that the critical wind speed of stalk breaking is a superior way to determine the stalk lodging resistance. These results suggest that, in the late growth stage, the decrease in the stalk mechanical strength is an important reason for the decrease in the critical wind speed of stalk breaking and the increase in the lodging rate.

20.
Sci Rep ; 10(1): 15378, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958804

RESUMO

Marginal superiority is a common phenomenon in crops, and is caused by the competitiveness of individual plant for resources and crop adaptability to crowded growth conditions. In this study, in order to clarify the response of marginal superiority to maize morphology and plant-density tolerance, field experiments without water and nutrition stress were conducted at Qitai Farm in Xinjiang, China, in 2013-2014 and 2016-2019. The results showed that no more than three border rows of all the cultivars had marginal superiority under high density, about 90% of all the cultivars had no more than two border row that had marginal superiority and a significant negative correlation was observed between marginal superiority and population grain yield (first border row: y = - 2.193x + 213.9, p < 0.05; second border row: y = - 2.076x + 159.2, p < 0.01). Additionally, marginal superiority was found to have a significant positive relationship with plant density (first border row: y = 6.049x + 73.76, p < 0.01; second border row: y = 1.88x + 95.41, p < 0.05) and the average leaf angle above the ear (first border row: y = 2.306x + 103.1, p < 0.01). These results indicated that the smaller the leaf angle above the ear, the weaker the marginal superiority and the higher the grain yield. It suggests that the magnitude of marginal superiority in the border rows can be an indicator for plant-density tolerance under high density. What's more, cultivars with small leaf angle above the ear can be selected to weaken the marginal superiority and improve grain yield under high plant density. Conversely, cultivars with a large leaf angle above the ear can be selected to achieve higher individual yield in intercropping systems with no more than four rows alternated with other crops.


Assuntos
Zea mays/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , China , Produtos Agrícolas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA