Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
iScience ; 27(5): 109799, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38726367

RESUMO

Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma of the brain with poor prognosis. The scarcity of cell lines established using PCNSL makes it difficult to conduct preclinical studies on new drugs. We aimed to explore the effect of selinexor combined with zanubrutinib in PCNSL using established PCNSL cells and an orthotopic PCNSL model. Primary PCNSL cells were successfully cultured. Selinexor inhibited proliferation, induced G1 phase arrest, and promoted apoptosis, however, induced drug resistance in PCNSL. Selinexor combined with zanubrutinib had a synergistic effect on PCNSL and prevented the onset of selinexor resistance in PCNSL by inhibiting AKT signaling. Moreover, selinexor combined with zanubrutinib notably slowed tumor growth and prolonged survival compared to that of the control. Overall, the addition of zanubrutinib to selinexor monotreatment had a synergistic effect in vitro and prolonged survival in vivo.

2.
Biochem Pharmacol ; 225: 116267, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723721

RESUMO

Acute liver failure (ALF) is a critical condition that can lead to substantial liver dysfunction. It is characterized by complex clinical manifestations and rapid progression, presenting significant challenges in diagnosis and treatment. We investigated the protective effect of mefunidone (MFD), a novel antifibrosis pyridone agent, on ALF in mice, and explored its potential mechanism of action. MFD pretreatment can alleviate lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced ALF, reduce hepatocyte apoptosis, and reduce inflammation and oxidative stress. Additionally, MFD alleviated LPS/D-GalN-stimulated reactive oxygen species (ROS) production and cell death in AML12 cells. RNA sequencing enrichment analysis showed that MFD significantly affected the Mitogen-Activated Protein Kinase (MAPK) pathway. In vivo and in vitro experiments showed that MFD inhibited MKK4 and JNK phosphorylation. JNK activation caused by MKK4 and JNK activators could eliminate the therapeutic effect of MFD on AML12. In addition, MFD pretreatment alleviated ConA-induced ALF, reduced inflammation and oxidative stress in mice, and reduced mouse mortality. These results suggest that MFD can potentially protect against ALF, partially by inhibiting the MKK4-JNK pathway, and is a promising new therapeutic drug for ALF.

3.
Plant Cell Environ ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693830

RESUMO

Urban trees possess different capacities to mitigate ozone (O3) pollution through stomatal uptake. Stomatal closure protects trees from oxidative damage but limits their growth. To date, it is unclear how plant hydraulic function affect stomatal behaviour and determine O3 resistance. We assessed gas exchange and hydraulic traits in three subtropical urban tree species, Celtis sinensis, Quercus acutissima, and Q. nuttallii, under nonfiltered ambient air (NF) and elevated O3 (NF60). NF60 decreased photosynthetic rate (An) and stomatal conductance (gs) only in Q. acutissima and Q. nuttallii. Maintained An in C. sinensis suggested high O3 resistance and was attributed to higher leaf capacitance at the full turgor. However, this species exhibited a reduced stomatal sensitivity to vapour pressure deficit and an increased minimal gs under NF60. Such stomatal dysfunction did not decrease intrinsic water use efficiency (WUE) due to a tight coupling of An and gs. Conversely, Q. acutissima and Q. nuttallii showed maintained stomatal sensitivity and increased WUE, primarily correlated with gs and leaf water relations, including relative water content and osmotic potential at turgor loss point. Our findings highlight a trade-off between O3 resistance and stomatal functionality, with efficient stomatal control reducing the risk of hydraulic failure under combined stresses.

4.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663476

RESUMO

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Movimento Celular , Proliferação de Células , Fator 2 Relacionado a NF-E2 , Quassinas , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Quassinas/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Espécies Reativas de Oxigênio/metabolismo , Progressão da Doença , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
5.
Am J Hum Genet ; 111(5): 841-862, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593811

RESUMO

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Assuntos
Transdiferenciação Celular , Fibroblastos , Neurônios , Análise de Sequência de RNA , Humanos , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Análise de Sequência de RNA/métodos , Neurônios/metabolismo , Neurônios/citologia , Transcriptoma , Reprodutibilidade dos Testes , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , RNA-Seq/métodos , Feminino , Masculino
6.
J Proteomics ; 297: 105130, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401592

RESUMO

Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.


Assuntos
Germinação , Gossypium , Gossypium/genética , Proteômica , Sementes , Fenótipo , Fibra de Algodão
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 231-236, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387927

RESUMO

OBJECTIVE: To understand the serological characteristics of irregular antibodies in pregnant women and explore their clinical significance. METHODS: From January 2017 to March 2022, 151 471 pregnant women in Women and Children's Hospital of Chongqing Medical University were enrolled in this study, microcolumn gel card test was used for irregular antibody screening, and antibody specificity identification was further performed in some antibody-positive subjects. RESULTS: The positive rate of irregular antibody screening in the enrolled pregnant women was 0.91% (1 375/151 471), 0.23% (355/151 471) was detected in the first trimester, 0.05% (71/151 471) in the second trimester, and 0.63% (949/151 471) in the third trimester. The positive rate of irregular antibody screening in the third trimester was significantly higher than that in the first and second trimester, and a significant increase in the number of positive cases was found in the third trimester than that in the second trimester. The analysis of agglutination intensity of 1 375 irregular antibody screening positive results showed that the weakly positive agglutination intensity accounted for 50.11% (689/ 1 375), which was the highest, the suspicious positive was 18.69% (257/1 375), and the positive was 31.20% (429/1 375). The significant difference in distribution of agglutination intensity was not observed between the first trimester group and the second trimester group, however, in the third trimester, the proportion of suspicious positive and weakly positive was lower than the first trimester, while, the proportion of positive was higher than the first trimester, and the difference was statistically significant (P < 0.001). Among the irregular antibody screening positive pregnant women, the proportion of pregnant women with pregnancy number ≥ 2 was significantly higher than that with pregnancy ≤ 1. Among 60 pregnant women who underwent antibody identification, the distributions of the antibodies were as follows: Rh blood group system accounted for 23.33% (14/60), Lewis system 43.33% (26/60), Kidd system 3.33% (2/60), MNS system 16.67% (10/60), P1PK system 1.67% (1/60), autoantibodies 1.67% (1/60), and 4 cases was unable to identify (6.67%, 4/60). Among specific antibodies, the anti-Lea was the most common (30.00%), followed by anti-E (16.67%) and anti-M (16.67%). CONCLUSION: The differences of irregular antibody serological characteristics exist in pregnant women from different regions with different genetic backgrounds, understanding the characteristics of irregular antibody in local pregnant women is of great significance for ensuring transfusion safety in pregnant women and preventing hemolytic disease of newborn.


Assuntos
Antígenos de Grupos Sanguíneos , Gestantes , Recém-Nascido , Criança , Feminino , Gravidez , Humanos , Relevância Clínica , Transfusão de Sangue , Autoanticorpos
9.
World J Surg Oncol ; 22(1): 27, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267975

RESUMO

BACKGROUND: In recent years, the research on the relationship between sarcopenia before and after the treatment of esophageal cancer, as well as its impact on prognosis of esophageal cancer, has increased rapidly, which has aroused people's attention to the disease of patients with esophageal cancer complicated with sarcopenia. This review examines the prevalence of sarcopenia in patients with esophageal cancer, as well as the relationship between sarcopenia (before and after surgery or chemotherapy) and prognosis in patients with esophageal cancer. Moreover, we summarized the potential pathogenesis of sarcopenia and pharmacologic and non-pharmacologic therapies. METHODS: A narrative review was performed in PubMed and Web of Science using the keywords ("esophageal cancer" or "esophageal neoplasm" or "neoplasm, esophageal" or "esophagus neoplasm" or "esophagus neoplasms" or "neoplasm, esophagus" or "neoplasms, esophagus" or "neoplasms, esophageal" or "cancer of esophagus" or "cancer of the esophagus" or "esophagus cancer" or "cancer, esophagus" or "cancers, esophagus" or "esophagus cancers" or "esophageal cancer" or "cancer, esophageal" or "cancers, esophageal" or "esophageal cancers") and ("sarcopenia" or "muscular atrophy" or "aging" or "senescence" or "biological aging" or "aging, biological" or "atrophies, muscular" or "atrophy, muscular" or "muscular atrophies" or "atrophy, muscle" or "atrophies, muscle" or "muscle atrophies"). Studies reporting relationship between sarcopenia and esophageal cancer were analyzed. RESULTS: The results of the review suggest that the average prevalence of sarcopenia in esophageal cancer was 46.3% ± 19.6% ranging from 14.4 to 81% and sarcopenia can be an important predictor of poor prognosis in patients with esophageal cancer. Patients with esophageal cancer can suffer from sarcopenia due to their nutritional deficiencies, reduced physical activity, chemotherapy, and the effects of certain inflammatory factors and pathways. When classic diagnostic values for sarcopenia such as skeletal muscle index (SMI) are not available clinically, it is also feasible to predict esophageal cancer prognosis using simpler metrics, such as calf circumference (CC), five-count sit-up test (5-CST), and six-minute walk distance (6MWD). CONCLUSIONS: Identifying the potential mechanism of sarcopenia in patients with esophageal cancer and implementing appropriate interventions may hold the key to improving the prognosis of these patients.


Assuntos
Neoplasias Esofágicas , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/etiologia , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/terapia , Atrofia , Músculo Esquelético , Exercício Físico
10.
Plant Cell Environ ; 47(4): 1070-1083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018689

RESUMO

Forest ecosystems cover a large area of the global land surface and are important carbon sinks. The water-carbon cycles of forests are prone to climate change, but uncertainties remain regarding the magnitude of water use efficiency (WUE) response to climate change and the underpinning mechanism driving WUE variation. We conducted a meta-analysis of the effects of elevated CO2 concentration (eCO2 ), drought and elevated temperature (eT) on the leaf- to plant-level WUE, covering 80 field studies and 95 tree species. The results showed that eCO2 increased leaf intrinsic and instantaneous WUE (WUEi, WUEt), whereas drought enhanced both leaf- and plant-level WUEs. eT increased WUEi but decreased carbon isotope-based WUE, possibly due to the influence of mesophyll conductance. Stimulated leaf-level WUE by drought showed a progressing trend with increasing latitude, while eCO2 -induced WUE enhancement showed decreasing trends after >40° N. These latitudinal gradients might influence the spatial pattern of climate and further drove WUE variation. Moreover, high leaf-level WUE under eCO2 and drought was accompanied by low leaf carbon contents. Such a trade-off between growth efficiency and defence suggests a potentially compromised tolerance to diseases and pests. These findings add important ecophysiological parameters into climate models to predict carbon-water cycles of forests.


Assuntos
Ecossistema , Água , Carbono , Mudança Climática , Dióxido de Carbono , Florestas , Folhas de Planta/química , Plantas
11.
J Proteome Res ; 23(1): 368-376, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006349

RESUMO

The low-molecular-weight proteins (LMWP) in serum and plasma are related to various human diseases and can be valuable biomarkers. A small open reading frame-encoded peptide (SEP) is one kind of LMWP, which has been found to function in many bioprocesses and has also been found in human blood, making it a potential biomarker. The detection of LMWP by a mass spectrometry (MS)-based proteomic assay is often inhibited by the wide dynamic range of serum/plasma protein abundance. Nanoparticle protein coronas are a newly emerging protein enrichment method. To analyze SEPs in human serum, we have developed a protocol integrated with nanoparticle protein coronas and liquid chromatography (LC)/MS/MS. With three nanoparticles, TiO2, Fe3O4@SiO2, and Fe3O4@SiO2@TiO2, we identified 164 new SEPs in the human serum sample. Fe3O4@SiO2 and a nanoparticle mixture obtained the maximum number and the largest proportion of identified SEPs, respectively. Compared with acetonitrile-based extraction, nanoparticle protein coronas can cover more small proteins and SEPs. The magnetic nanoparticle is also fit for high-throughput parallel protein separation before LC/MS. This method is fast, efficient, reproducible, and easy to operate in 96-well plates and centrifuge tubes, which will benefit the research on SEPs and biomarkers.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Fases de Leitura Aberta , Dióxido de Silício , Peptídeos/análise , Proteínas Sanguíneas/química , Biomarcadores
12.
Cancer Innov ; 2(2): 114-130, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38090060

RESUMO

Glioblastoma (GBM) is the most common primary central nervous system tumor, whose prognosis remains poor under the sequential standard of care, such as neurosurgery followed by concurrent temozolomide radiochemotherapy and adjuvant temozolomide chemotherapy in the presence or absence of tumor treating fields. Accordingly, the advent of molecular targeted therapy and immunotherapy has opened a new era of tumor management. A diverse range of targeted drugs have been tested in patients with GBM in phase III clinical trials. However, these drugs are ineffective for all patients, as evidenced by the fact that only a minority of patients in these trials showed prolonged survival. Furthermore, there are several published phase III clinical trials that involve immune checkpoint inhibitors, peptide vaccines, dendritic cell vaccines, and virotherapy. Accordingly, this review comprehensively overviews existing studies of targeted drugs and immunotherapy for glioma and discusses the challenge and perspective of targeted drugs and immunotherapy for glioma to clarify future directions.

13.
Acta Pharm Sin B ; 13(12): 4748-4764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045044

RESUMO

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor in adults and is poorly controlled. Previous studies have shown that both macrophages and angiogenesis play significant roles in GBM progression, and co-targeting of CSF1R and VEGFR is likely to be an effective strategy for GBM treatment. Therefore, this study developed a novel and selective inhibitor of CSF1R and VEGFR, SYHA1813, possessing potent antitumor activity against GBM. SYHA1813 inhibited VEGFR and CSF1R kinase activities with high potency and selectivity and thus blocked the cell viability of HUVECs and macrophages and exhibited anti-angiogenetic effects both in vitro and in vivo. SYHA1813 also displayed potent in vivo antitumor activity against GBM in immune-competent and immune-deficient mouse models, including temozolomide (TMZ) insensitive tumors. Notably, SYHA1813 could penetrate the blood-brain barrier (BBB) and prolong the survival time of mice bearing intracranial GBM xenografts. Moreover, SYHA1813 treatment resulted in a synergistic antitumor efficacy in combination with the PD-1 antibody. As a clinical proof of concept, SYHA1813 achieved confirmed responses in patients with recurrent GBM in an ongoing first-in-human phase I trial. The data of this study support the rationale for an ongoing phase I clinical study (ChiCTR2100045380).

14.
Environ Sci Pollut Res Int ; 30(57): 120483-120495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945953

RESUMO

Potato is an important crop worldwide and threatened by various environmental stresses, including elevated ozone (e[O3]). Here, we conducted a meta-analysis to quantify the effect of e[O3] on potato plants and how it varies depending upon different experimental conditions. Regarding plant growth and biomass, e[O3] significantly decreased shoot biomass by 18% and belowground biomass by 35%, while it increased the leaf area index by 19% and total number of injured leaves by 146%. As for yield, e[O3] significantly decreased the total tuber number by 21%. A relatively pronounced effect of e[O3] on the stomatal conductance was observed when exposure lasted 31-60 days, which was significantly greater than that after exposure lasted 96-311 days. The overall quantity of leaves was mainly decreased by higher (100-150 ppb) than lower (30-80 ppb) concentrations of e[O3] compared to ambient O3. The effect of e[O3] on the total tuber number was significant mainly when exposure lasted 31-90 days and was greater in plants grown in growth chambers than those planted in open-top chambers and glasshouses. The effect of e[O3] stress on physiology, growth, and yield varied among cultivars, with some cultivars showing marked tolerance relative to other cultivars. The findings can guide strategies to manage the negative impacts of e[O3] stress on potato production.


Assuntos
Ozônio , Folhas de Planta , Solanum tuberosum , Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Fotossíntese , Estresse Fisiológico
15.
J Integr Plant Biol ; 65(12): 2569-2586, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861067

RESUMO

Foxtail millet (Setaria italica), a vital drought-resistant crop, plays a significant role in ensuring food and nutritional security. However, its drought resistance mechanism is not fully understood. N6 -methyladenosine (m6 A) modification of RNA, a prevalent epi-transcriptomic modification in eukaryotes, provides a binding site for m6 A readers and affects plant growth and stress responses by regulating RNA metabolism. In this study, we unveiled that the YT521-B homology (YTH) family gene SiYTH1 positively regulated the drought tolerance of foxtail millet. Notably, the siyth1 mutant exhibited reduced stomatal closure and augmented accumulation of excessive H2 O2 under drought stress. Further investigations demonstrated that SiYTH1 positively regulated the transcripts harboring m6 A modification related to stomatal closure and reactive oxygen species (ROS) scavenging under drought stress. SiYTH1 was uniformly distributed in the cytoplasm of SiYTH1-GFP transgenic foxtail millet. It formed dynamic liquid-like SiYTH1 cytosol condensates in response to drought stress. Moreover, the cytoplasmic protein SiYTH1 was identified as a distinct m6 A reader, facilitating the stabilization of its directly bound SiARDP and ROS scavenging-related transcripts under drought stress. Furthermore, natural variation analysis revealed SiYTH1AGTG as the dominant allele responsible for drought tolerance in foxtail millet. Collectively, this study provides novel insights into the intricate mechanism of m6 A reader-mediated drought tolerance and presents a valuable genetic resource for improving drought tolerance in foxtail millet breeding.


Assuntos
Resistência à Seca , Setaria (Planta) , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Setaria (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
16.
Cancer Med ; 12(21): 20639-20654, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37864422

RESUMO

BACKGROUND: Glioblastoma (GBM), the most common primary malignant brain tumor, has a poor prognosis, with a median survival of only 14.6 months. The Warburg effect is an abnormal energy metabolism, which is the main cause of the acidic tumor microenvironment. This study explored the role of the Warburg effect in the prognosis and immune microenvironment of GBM. METHODS: A prognostic risk score model of Warburg effect-related genes (Warburg effect signature) was constructed using GBM cohort data from The Cancer Genome Atlas. Cox analysis was performed to identify independent prognostic factors. Next, the nomogram was built to predict the prognosis for GBM patients. Finally, the drug sensitivity analysis was utilized to find the drugs that specifically target Warburg effect-related genes. RESULTS: Age, radiotherapy, chemotherapy, and WRGs score were confirmed as independent prognostic factors for GBM by Cox analyses. The C-index (0.633 for the training set and 0.696 for the validation set) and area under curve (>0.7) indicated that the nomogram exhibited excellent performance. The calibration curve also indicates excellent consistency of the nomogram between predictions and actual observations. In addition, immune microenvironment analysis revealed that patients with high WRGs scores had high immunosuppressive scores, a high abundance of immunosuppressive cells, and a low response to immunotherapy. The Cell Counting Kit-8 assays showed that the drugs targeting Warburg effect-related genes could inhibit the GBM cells growth in vitro. CONCLUSION: Our research showed that the Warburg effect is connected with the prognosis and immune microenvironment of GBM. Therefore, targeting Warburg effect-related genes may provide novel therapeutic options.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Relevância Clínica , Nomogramas , Calibragem , Contagem de Células , Prognóstico , Microambiente Tumoral/genética
17.
Environ Sci Pollut Res Int ; 30(47): 104652-104671, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37707727

RESUMO

Climate warming has gradually become a major problem threatening human survival, and countries have begun to pay attention to carbon emissions. Energy conservation and emission reduction has become a central task in China's economic development since the 14th Five-Year Plan. As the main force of carbon emissions in China, thermal power industry is bound to become the focus of attention in China's low-carbon development strategy and energy conservation and emission reduction. Moreover, with the marketization of the power industry, the state has joined the market competition at the power generation sectors and the power sale sectors, and implemented the "opening the middle of the two pipes." Therefore, the coverage of influence of carbon emissions and carbon investment behavior of power generation companies is not limited to itself, but will also be extended to the supply chain level. Based on the above background, this paper evaluates the scientific rationality of low-carbon investment projects of thermal power enterprises from the perspective of low-carbon supply chain, which not only can help enterprises achieve a win-win situation of economic and environmental benefits, but also contribute to the carbon emission reduction of the entire supply chain, thereby promoting China's entire social and economic energy conservation and emission reduction work.


Assuntos
Carbono , Centrais Elétricas , Humanos , Carbono/análise , Investimentos em Saúde , China , Dióxido de Carbono/análise , Desenvolvimento Econômico
18.
BMC Med ; 21(1): 230, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400844

RESUMO

BACKGROUND: Surgery is a common treatment strategy for patients with neurofibromatosis type 1 (NF1)-related plexiform neurofibroma (PN) and has limited efficacy. FCN-159 is a novel anti-tumorigenic drug via selective inhibition of MEK1/2. This study assesses the safety and efficacy of FCN-159 in patients with NF1-related PN. METHODS: This is a multicenter, open-label, single-arm, phase I dose-escalation study. Patients with NF1-related PN that was non-resectable or unsuitable for surgery were enrolled; they received FCN-159 monotherapy daily in 28-day cycles. RESULTS: Nineteen adults were enrolled in the study, 3 in 4 mg, 4 in 6 mg, 8 in 8 mg, and 4 in 12 mg. Among patients included in dose-limiting toxicity (DLT) analysis, DLTs (grade 3 folliculitis) were reported in 1 of 8 patients (16.7%) receiving 8 mg and 3 of 3 (100%) patients receiving 12 mg. The maximum tolerated dose was determined to be 8 mg. FCN-159-related treatment-emergent adverse events (TEAEs) were observed in 19 patients (100%); most of which were grade 1 or 2. Nine (47.4%) patients reported grade 3 study-drug-related TEAEs across all dose levels, including four experiencing paronychia and five experiencing folliculitis. Of the 16 patients analyzed, all (100%) had reduced tumor size and six (37.5%) achieved partial responses; the largest reduction in tumor size was 84.2%. The pharmacokinetic profile was approximately linear between 4 and 12 mg, and the half-life supported once daily dosing. CONCLUSIONS: FCN-159 was well tolerated up to 8 mg daily with manageable adverse events and showed promising anti-tumorigenic activity in patients with NF1-related PN, warranting further investigation in this indication. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04954001. Registered 08 July 2021.


Assuntos
Neurofibroma Plexiforme , Neurofibromatose 1 , Humanos , Adulto , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/patologia , Neurofibroma Plexiforme/tratamento farmacológico , Neurofibroma Plexiforme/patologia , Inibidores de Proteínas Quinases/uso terapêutico
19.
Quant Imaging Med Surg ; 13(6): 3569-3586, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284077

RESUMO

Background: Concurrent chemoradiotherapy (CCRT) and induction chemotherapy (IC) plus CCRT (IC + CCRT) are the main treatments for patients with advanced nasopharyngeal carcinoma (NPC). We aimed to develop deep learning (DL) models using magnetic resonance (MR) imaging to predict the risk of residual tumor after each of the 2 treatments and to provide a reference for patients to select the best treatment option. Methods: A retrospective study was conducted on 424 patients with locoregionally advanced NPC who underwent CCRT or IC + CCRT between June 2012 and June 2019 in the Renmin Hospital of Wuhan University. According to the evaluation of MR images taken 3 to 6 months after radiotherapy, patients were divided into 2 categories: residual tumor and non-residual tumor. Transferred U-net and Deeplabv3 neural networks were trained, and the better-performance segmentation model was used to segment the tumor area on axial T1-weighted enhanced MR images. Then, 4 pretrained neural networks for prediction of residual tumors were trained with CCRT and IC + CCRT datasets, and the performances of the models trained using each image and each patient as a unit were evaluated. Patients in the test cohort of CCRT and IC + CCRT datasets were successively classified by the trained CCRT and IC + CCRT models. Model recommendations were formed according to the classification and compared with the treatment decisions of physicians. Results: The Dice coefficient of Deeplabv3 (0.752) was higher than that of U-net (0.689). The average area under the curve (aAUC) of the 4 networks was 0.728 for the CCRT and 0.828 for the IC + CCRT models trained using a single image as a unit, whereas the aAUC for models trained using each patient as a unit was 0.928 for the CCRT and 0.915 for the IC + CCRT models, respectively. The accuracy of the model recommendation and the decision of physicians was 84.06% and 60.00%, respectively. Conclusions: The proposed method can effectively predict the residual tumor status of patients after CCRT and IC + CCRT. Recommendations based on the model prediction results can protect some patients from receiving additional IC and improve the survival rate of patients with NPC.

20.
Kidney Int ; 104(2): 305-323, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164261

RESUMO

Damage-associated molecular patterns (DAMPs) are a cause of acute kidney injury (AKI). Our knowledge of these DAMPs remains incomplete. Here, we report serum peroxiredoxin 1 (Prdx1) as a novel DAMP for AKI. Lipopolysaccharide (LPS) and kidney ischemia/reperfusion injury instigated AKI with concurrent increases in serum Prdx1 and reductions of Prdx1 expression in kidney tubular epithelial cells. Genetic knockout of Prdx1 or use of a Prdx1-neutralizing antibody protected mice from AKI and this protection was impaired by introduction of recombinant Prdx1 (rPrdx1). Mechanistically, lipopolysaccharide increased serum and kidney proinflammatory cytokines, macrophage infiltration, and the content of M1 macrophages. All these events were suppressed in Prdx1-/- mice and renewed upon introduction of rPrdx1. In primary peritoneal macrophages, rPrdx1 induced M1 polarization, activated macrophage-inducible C-type lectin (Mincle) signaling, and enhanced proinflammatory cytokine production. Prdx1 interacted with Mincle to initiate acute kidney inflammation. Of note, rPrdx1 upregulated Mincle and the spleen tyrosine kinase Syk system in the primary peritoneal macrophages, while knockdown of Mincle abolished the increase in activated Syk. Additionally, rPrdx1 treatment enhanced the downstream events of Syk, including transcription factor NF-κB signaling pathways. Furthermore, serum Prdx1 was found to be increased in patients with AKI; the increase of which was associated with kidney function decline and inflammatory biomarkers in patient serum. Thus, kidney-derived serum Prdx1 contributes to AKI at least in part by activating Mincle signaling and downstream pathways.


Assuntos
Injúria Renal Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Inflamação/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Alarminas , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA