Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 867, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287015

RESUMO

Pitting corrosion in seawater is one of the most difficult forms of corrosion to identify and control. A workhorse material for marine applications, 316L stainless steel (316L SS) is known to balance resistance to pitting with good mechanical properties. The advent of additive manufacturing (AM), particularly laser powder bed fusion (LPBF), has prompted numerous microstructural and mechanical investigations of LPBF 316L SS; however, the origins of pitting corrosion on as-built surfaces is unknown, despite their utmost importance for certification of LPBF 316L SS prior to fielding. Here, we show that Mn-rich silicate slags are responsible for pitting of the as-built LPBF material in sodium chloride due to their introduction of deleterious defects such as cracks or surface oxide heterogeneities. In addition, we explain how slags are formed in the liquid metal and deposited at the as-built surfaces using high-fidelity melt pool simulations. Our work uncovers how LPBF changes surface oxides due to rapid solidification and high-temperature oxidation, leading to fundamentally different pitting corrosion mechanisms.

2.
Curr Microbiol ; 80(1): 17, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460935

RESUMO

Due to the great threat of chemical pesticides to the ecosystem environment, it is a long-term goal to find environmentally friendly green pesticides. Essential oils (EOs) are considered weapons in plant chemical defense and are important sources of green pesticides. Therefore, the antifungal effects and action mechanisms of Cymbopogom citratus (C. citratus) EOs against seven kinds of Panax notoginseng (P. notoginseng) pathogenic fungi were investigated. Oxford Cup results showed that C. citratus EOs had an excellent detraction effects against seven fungi of P. notoginseng. Gas chromatography-mass spectrometry (GC-MS) was used to construct the chemical profiles of C. citratus EOs, disclosed that the main categories are terpenes and oxygenated terpenes. In addition, compared with the hymexazol, the minimum inhibitory concentration (MIC) showed that EOs and their main components had strong antifungal activities. Besides, EOs had a synergistic effect with hymexazol (a chemical pesticide). The antifungal mechanism of C. citratus EOs was studied by using Fusarium oxysporum (F. oxysporum) as the dominant pathogen. C. citratus EOs may affect the metabolism of fungi and induce mycotoxins to destroy the cell wall to achieve antifungal effects. Finally, EOs were found to significantly retard P. notoginseng infection by F. oxysporum. According to our research, C. citratus EOs are potential green antifungal agent that can be used in the cultivation of P. notoginseng.


Assuntos
Óleos Voláteis , Panax notoginseng , Praguicidas , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Ecossistema , Fungos , Terpenos
3.
RSC Adv ; 12(6): 3721-3728, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425363

RESUMO

Exceptionally coercive SmCo5 particles are produced through calcium vapor reduction of SmCo5O9 powders synthesized by flame spray pyrolysis. The resulting powders are composed of oblate hexagonal particles approximately 2 microns across with smooth surfaces. This microstructure yields record-breaking room temperature coercivity H c,i >80 kOe, or >60 kOe when combined with advanced manufacturing approaches such as electrophoretic deposition or molding with tetraglyme inks. These techniques enable straightforward low-loss fabrication of bulk parts. The high coercivity is extremely robust at elevated temperatures, exceeding 10 kOe even at 600 °C. The oxide precursor approach removes the need for strict environmental control during synthesis that is common to other nanoparticle-based routes and can readily be scaled to kilogram quantities of feedstock production. Magnet powders produced by calcium vapor reduction can thus function as the building blocks for traditional or advanced manufacturing techniques, while the high coercivity enables consistent performance across a wide range of temperatures.

4.
Ecotoxicol Environ Saf ; 167: 138-145, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317118

RESUMO

Although mode of action (MOA) plays a key role in the understanding of the toxic mechanism of chemicals, the MOAs of class-based compounds to tadpoles have not been investigated. To explore the MOAs, acute toxicity (expressed as log 1/LC50) to Rana chensinensis tadpoles were determined and molecular descriptors were calculated. Quantitative structure-activity relationship (QSAR) showed that toxicity to tadpoles is closely related to the chemical octanol/water partition coefficient (log KOW), energy of the lowest unoccupied molecular orbital (ELUMO), and number of hydrogen bond donors and acceptors (NHDA), representing the bio-uptake potential in tadpoles, the electrophilicity and hydrogen bonding capacity with target site(s), respectively. Comparison of the toxicity values between tadpoles and fish revealed that there were no significant differences for the overlapping compounds (average residual = 0.29 between tadpole and fish toxicity) with P values of interspecies correlation substantially less than 0.001. Classification of MOAs for the class-based compounds based on the excess toxicity calculated from toxicity ratio suggested that baseline, less inert compounds and some reactive or specifically-acting compounds share same MOAs between tadpoles and fish. Fish and tadpoles can serve as surrogates for each other in the safety evaluation of organic pollutants.


Assuntos
Peixes , Larva/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Ranidae , Poluentes da Água/toxicidade , Animais , Ligação de Hidrogênio , Relação Quantitativa Estrutura-Atividade
5.
Chemosphere ; 213: 414-422, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243207

RESUMO

The mode of action (MOA) plays a key role in the risk assessment of pollutants in water. Although fish is a key model organism used in the risk assessment of pollutants in water, the MOAs have not been compared between fish and embryo toxicity for classified compounds. In this paper, regression analysis was carried out for fish and embryo toxicities against the calculated molecular descriptors and MOAs were evaluated from toxicity ratio. The toxicity significantly related with the chemical hydrophobicity for baseline and less inert compounds, respectively, indicates that these two classes of compounds share the same MOAs between fish and embryos. Comparison of the toxicity ratios shows that reactive compounds exhibit excess toxicity to both fish and embryos. These compounds can react covalently with biologically target molecules through nucleophilic addition reactions, Michael addition oxidation, or amination. Comparing with baseline, less inert and reactive compounds, many specifically-acting compounds have strong docking capacity with protein molecules. Some specifically-acting compounds, such as fungicides, have very similar toxic effect to both fish and embryos. However, insecticides are more toxic to fish than embryos; herbicides and medications are more toxic to embryos than fish. Differences in the interactions of chemicals with target molecules or bioconcentration potentials between fish and embryos may result in the differences in toxic effects. There are some factors that influence the identification of MOAs, such as quality of toxicity data, bioavailability and ionization. These factors should be considered in the identification of MOAs in the risk assessment of organic pollutants.


Assuntos
Peixes/embriologia , Poluentes Químicos da Água/efeitos adversos , Peixe-Zebra/embriologia , Animais
6.
Ultramicroscopy ; 194: 117-125, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114605

RESUMO

Atomic configurations of glassy or amorphous materials containing medium-range order (MRO) may be identified by comparing fluctuation transmission electron microscopy (FTEM) measurements to FTEM simulations obtained using model configurations. Candidate model sizes have traditionally been much thinner than the samples measured experimentally, and publicly available FTEM simulation software has until now omitted microscope parameters, dynamical scattering, and the phase of the diffracted electron wave. We introduce MS-STEM-FEM, an open-source software package for simulating FTEM experiments using established multi-slice TEM simulation techniques to emulate experiment more closely by incorporating microscope parameters and simulating electron scattering and propagation as a complex valued wave. Simulations using established models are compared with results of experimental STEM-FEM to validate the software. Several statistical measures of diffraction are implemented and their responses to model features are compared. Dynamical scattering is found to be less influential than the variety of crystallite orientations which occur in thicker models. Simulations of variable resolution microscopy confirm that cumulative intensity of the FTEM signal decreases with reduced model MRO and increased coherence volume. Advantageous model scaling characteristics and efficient processor performance scaling are demonstrated, along with a study of convergence with respect to pertinent simulation parameters to identify accuracy requirements.

7.
Microsc Microanal ; 20(5): 1605-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033350

RESUMO

Fluctuation electron microscopy can reveal the nanoscale order in amorphous materials via the statistical variance in the scattering intensity as a function of position, scattering vector, and resolution. However, several sources of experimental artifacts can seriously affect the magnitude of the variance peaks. The use of a scanning transmission electron microscope for data collection affords a convenient means to check whether artifacts are present. As nanodiffraction patterns are collected in serial, any spatial or temporal dependence of the scattering intensity across the series can easily be detected. We present examples of the major types of artifact and methods to correct the data or to avoid the problem experimentally. We also re-cast the statistical formalism used to identify sources of noise in view of the present results. The present work provides a basis on which to perform fluctuation electron microscopy with a high level of reliability and confidence in the quantitative magnitude of the data.

8.
Ultramicroscopy ; 133: 95-100, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23933598

RESUMO

Fluctuation Transmission Electron Microscopy (FTEM) has a unique ability to probe topological order on the 1-3 nm length scale in diffraction amorphous materials. However, extracting a quantitative description of the order has been challenging. We report that the FTEM covariance, computed at two non-degenerate Bragg reflections, is able to distinguish different regimes of size vs. volume fraction of order. The covariance analysis is general and does not require a material-specific atomistic model. We use a Monte-Carlo approach to compute different regimes of covariance, based on the probability of exciting multiple Bragg reflections when a STEM nanobeam interacts with a volume containing ordered regions in an amorphous matrix. We perform experimental analysis on several sputtered amorphous thin films including a-Si, nitrogen-alloyed GeTe and Ge2Sb2Te5. The samples contain a wide variety of ordered states. Comparison of experimental data with the covariance simulation reveals different regimes of nanoscale topological order.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA