Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 15(9): 21500-17, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26343678

RESUMO

A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 µm, an outside rib height of 5 µm and a rib width of 2.5 µm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10(-6) RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things.


Assuntos
Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Silício/química , Desenho de Equipamento
2.
Sensors (Basel) ; 15(7): 17313-28, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26193277

RESUMO

Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors' output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 µm(-1). For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.


Assuntos
Microtecnologia/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Eletricidade , Desenho de Equipamento
3.
Nature ; 475(7355): 217-21, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706032

RESUMO

Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.


Assuntos
Reparo do DNA/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma/genética , Hemofilia B/genética , Hemostasia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Éxons/genética , Fator IX/análise , Fator IX/genética , Vetores Genéticos/genética , Células HEK293 , Hemofilia B/fisiopatologia , Humanos , Íntrons/genética , Fígado/metabolismo , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Homologia de Sequência , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA