Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 283: 116810, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096692

RESUMO

Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.


Assuntos
Biodegradação Ambiental , Cádmio , Oryza , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Locos de Características Quantitativas , Ferro/metabolismo
2.
Natl Sci Rev ; 11(8): nwae225, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39071842

RESUMO

Periodontitis involves hyperactivated stromal cells that recruit immune cells, exacerbating inflammation. This study presents an ATP-responsive metal-organic framework (Mg/Zn-MOF) designed for periodontitis treatment, utilizing ion interference to modulate immune responses and prevent tissue destruction. Addressing the challenges of synergistic ion effects and targeted delivery faced by traditional immunomodulatory nanomaterials, the Mg/Zn-MOF system is activated by extracellular ATP-a pivotal molecule in periodontitis pathology-ensuring targeted ion release. Magnesium and zinc ions released from the framework synergistically inhibit membrane pore formation by attenuating Gasdermin D (GSDMD) expression and activation. This action curtails pyroptosis, lactate dehydrogenase and IL-1ß release, thwarting the onset of inflammatory cascades. Mechanistically, Mg/Zn-MOF intervenes in both the NLRP3/Caspase-1/GSDMD and Caspase-11/GSDMD pathways to mitigate pyroptosis. In vivo assessments confirm its effectiveness in diminishing inflammatory cell infiltration and preserving collagen integrity, thereby safeguarding against periodontal tissue damage and bone loss. This investigation highlights the promise of ion-interference strategies in periodontitis immunotherapy, representing a significant stride in developing targeted therapeutic approaches.

3.
Front Plant Sci ; 15: 1411178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903423

RESUMO

Introduction: Fingered citron slices possess significant nutritional value and economic advantages as herbal products that are experiencing increasing demand. The grading of fingered citron slices plays a crucial role in the marketing strategy to maximize profits. However, due to the limited adoption of standardization practices and the decentralized structure of producers and distributors, the grading process of fingered citron slices requires substantial manpower and lead to a reduction in profitability. In order to provide authoritative, rapid and accurate grading standards for the market of fingered citron slices, this paper proposes a grading detection model for fingered citron slices based on improved YOLOv8n. Methods: Firstly, we obtained the raw materials of fingered citron slices from a dealer of Sichuan fingered citron origin in Shimian County, Ya'an City, Sichuan Province, China. Subsequently, high-resolution fingered citron slices images were taken using an experimental bench, and the dataset for grading detection of fingered citron slices was formed after manual screening and labelling. Based on this dataset, we chose YOLOv8n as the base model, and then replaced the YOLOv8n backbone structure with the Fasternet main module to improve the computational efficiency in the feature extraction process. Then we redesigned the PAN-FPN structure used in the original model with BiFPN structure to make full use of the high-resolution features to extend the sensory field of the model while balancing the computation amount and model volume, and finally we get the improved target detection algorithm YOLOv8-FCS. Results: The findings from the experiments indicated that this approach surpassed the conventional RT-DETR, Faster R-CNN, SSD300 and YOLOv8n models in most evaluation indicators. The experimental results show that the grading accuracy of the YOLOv8-FCS model reaches 98.1%, and the model size is only 6.4 M, and the FPS is 130.3. Discussion: The results suggest that our model offers both rapid and precise grading for fingered citron slices, holding significant practical value for promoting the advancement of automated grading systems tailored to fingered citron slices.

4.
Environ Res ; 259: 119459, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942257

RESUMO

In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.


Assuntos
Cádmio , Oryza , Microbiologia do Solo , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Bactérias , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Cinza de Carvão/análise , Agricultura/métodos
5.
J Control Release ; 370: 600-613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735394

RESUMO

The sulfate radical (SO4•-), known for its high reactivity and long lifespan, has emerged as a potent antimicrobial agent. Its exceptional energy allows for the disruption of vital structures and metabolic pathways in bacteria that are usually inaccessible to common radicals. Despite its promising potential, the efficient generation of this radical, particularly through methods involving enzymes and photocatalysis, remains a substantial challenge. Here, we capitalized on the peroxidase (POD)-mimicking activity and photocatalytic properties of cerium oxide (CeO2) nanozymes, integrating these properties with the enhanced concept of plasma gold nanorod (GNR) to develop a half-encapsulated core@shell GNRs@CeO2 Janus heterostructure impregnated with persulfate. Under near-infrared irradiation, the GNRs generate hot electrons, thereby boosting the CeO2's enzyme-like activity and initiating a potent reactive oxygen species (ROS) storm. This distinct nanoarchitecture facilitates functional specialization, wherein the heterostructure and efficient light absorption ensured continuous hot electron flow, not only enhancing the POD-like activity of CeO2 for the production of SO4•- effectively, but also contributing a significant photothermal effect, disrupting periodontal plaque biofilm and effectively eradicating pathogens. Furthermore, the local temperature elevation synergistically enhances the POD-like activity of CeO2. Transcriptomics analysis, as well as animal experiments of the periodontitis model, have revealed that pathogens undergo genetic information destruction, metabolic disorders, and pathogenicity changes in the powerful ROS system, and profound therapeutic outcomes in vivo, including anti-inflammation and bone preservation. This study demonstrated that energy transfer to augment nanozyme activity, specifically targeting ROS generation, constitutes a significant advancement in antibacterial treatment.


Assuntos
Cério , Ouro , Nanocompostos , Periodontite , Sulfatos , Cério/química , Cério/farmacologia , Animais , Periodontite/tratamento farmacológico , Nanocompostos/química , Ouro/química , Sulfatos/química , Espécies Reativas de Oxigênio/metabolismo , Catálise , Nanotubos/química , Antibacterianos/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Masculino , Camundongos , Biofilmes/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos
6.
Plant Cell Environ ; 47(7): 2475-2490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38567814

RESUMO

Phosphorus (P)-hyperaccumulators for phytoextraction from P-polluted areas generally show rapid growth and accumulate large amounts of P without any toxicity symptom, which depends on a range of physiological processes and gene expression patterns that have never been explored. We investigated growth, leaf element concentrations, P fractions, photosynthetic traits, and leaf metabolome and transcriptome response in amphibious P-hyperaccumulators, Polygonum hydropiper and P. lapathifolium, to high-P exposure (5 mmol L-1), with 0.05 mmol L-1 as the control. Under high-P exposure, both species demonstrated good growth, allocating more P to metabolite P and inorganic P (Pi) accompanied by high potassium and calcium. The expression of a cluster of unigenes associated with photosynthesis was maintained or increased in P. lapathifolium, explaining the increase in net photosynthetic rate and the rapid growth under high-P exposure. Metabolites of trehalose metabolism, including trehalose 6-phosphate and trehalose, were sharply increased in both species by the high-P exposure, in line with the enhanced expression of associated unigenes, indicating that trehalose metabolic pathway was closely related to high-P tolerance. These findings elucidated the physiological and molecular responses involved in the photosynthesis and trehalose metabolism in P-hyperaccumulators to high-P exposure, and provides potential regulatory pathways to improve the P-phytoextraction capability.


Assuntos
Regulação da Expressão Gênica de Plantas , Fósforo , Fotossíntese , Folhas de Planta , Polygonum , Fósforo/metabolismo , Polygonum/metabolismo , Polygonum/genética , Polygonum/efeitos dos fármacos , Polygonum/fisiologia , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Trealose/metabolismo , Metaboloma , Transcriptoma
7.
ACS Nano ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324591

RESUMO

Chemotherapy is currently a widely used treatment for cancer in clinical settings. Some chemotherapeutic drugs such as oxaliplatin (OXA) can cause tumor immunogenic cell death (ICD), activate immunity, and realize chemoimmunotherapy for tumors. However, the low degree of accumulation and immunosuppressive microenvironment in tumors limit the immunotherapeutic efficacy of these drugs. T cell immunoreceptor with Ig and ITIM domains (TIGIT)/poliovirus receptor (PVR) is an inhibitory immune checkpoint pathway involved in mediating natural killer (NK) cell and T cell exhaustion in tumors. TIGIT expression is up-regulated in NK cells and CD8+ T cells during tumor development. Moreover, we first found that tumors upregulated PVR expression after OXA treatment in previous work. Here, we systematically analyzed the effects of OXA on the TIGIT/PVR pathway, further proving the effectiveness of the combination of OXA and TIGIT/PVR blocking combination. We developed engineered TIGIT-expressing cell membrane nanovesicles loaded with OXA (OXA@TIGIT MVs) for synergistic cancer therapy. OXA@TIGIT showed good efficacy in several cancer models, leading to tumor regression, effectively inhibiting tumor growth and prolonging mouse survival. Furthermore, the OXA@TIGIT MVs activate a strong tumor-specific immune response in the body, providing long-term (more than 2 months) protection from tumor reactivation in the B16F10 melanoma rechallenge mouse model.

8.
J Control Release ; 365: 469-479, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040340

RESUMO

With only limited clinical patient benefit, focusing on new immune checkpoint pathways could be an important complement to current immune checkpoint drugs. In addition, not only does T cell-mediated adaptive immunity play an important role, but also macrophage-mediated innate immunity, due to its abundant presence in solid tumors. Here, we developed an engineered M1-like macrophage exosome, OX40L M1-exos. OX40L M1-exos can activate the adaptive immunity by activating the OX40/OX40L pathway and can reprogram M2-like tumor-associated macrophages into M1-like macrophages, thereby restoring and enhancing macrophage-mediated innate immunity. Our OX40L M1-exos achieved an effective synergistic effect of innate and adaptive immunity and achieved a potent therapeutic effect in a mouse breast cancer model, effectively inhibiting tumor growth and metastasis. These results suggest that OX40L M1-exos are an attractive therapeutic strategy and may be an important complement to current cancer immunotherapies.


Assuntos
Exossomos , Neoplasias , Humanos , Camundongos , Animais , Macrófagos , Imunoterapia/métodos , Imunidade Inata , Neoplasias/terapia
9.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
10.
PLoS One ; 18(10): e0286414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903125

RESUMO

The molecular classification of human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) remains questionable. Differentially expressed genes were detected between tumor and normal tissues and GSEA showed they are associated with cell cycle pathways. This study aimed to classify HPV-negative HNSCCs based on cell cycle-related genes. The established gene pattern was correlated with tumor progression, clinical prognosis, and drug treatment efficacy. Biological analysis was performed using HNSCC patient sample data obtained from the Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Gene Expression Omnibus (GEO) databases. All samples included in this study contained survival information. RNA sequencing data from 740 samples were used for the analysis. Previously characterized cell cycle-related genes were included for unsupervised consensus clustering. Two subtypes of HPV-negative HNSCCs (C1, C2) were identified. Subtype C1 displayed low cell cycle activity, 'hot' tumor microenvironment (TME), earlier N stage, lower pathological grade, better prognosis, and higher response rate to the immunotherapy and targeted therapy. Subtype C2 was associated with higher cell cycle activity, 'cold' TME, later N stage, higher pathological grade, worse prognosis, and lower response rate to the treatment. According to the nearest template prediction method, classification rules were established and verified. Our work explored the molecular mechanism of HPV-negative HNSCCs in the view of cell cycle and might provide new sights for personalized anti-cancer treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Papillomavirus Humano , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/complicações , Proteômica , Ciclo Celular/genética , Microambiente Tumoral
11.
Small Methods ; 7(11): e2300880, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37653606

RESUMO

Chimeric antigen receptor (CAR) cell therapy is a great success and breakthrough in immunotherapy. However, there are still lots of barriers to its wide use in clinical, including long time consumption, high cost, and failure against solid tumors. For these challenges, researches are deplored to explore CAR cells to more appliable products in clinical. This minireview focuses on the advanced non-viral materials for CAR-T transfection ex vivo with better performance, delivery systems combined with other therapy for enhancement of CAR-T therapy in solid tumors. In addition, the targeted delivery platform for CAR cells in vivo generation as a breakthrough technology as its low cost and convenience. In the end, the prospective direction and future of CAR cell therapy are discussed.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/uso terapêutico , Linfócitos T , Estudos Prospectivos , Neoplasias/terapia
12.
Sci Total Environ ; 903: 166250, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574066

RESUMO

Tea (Camellia sinensis L.) plant is fluoride (F) hyperaccumulator. The decomposition of pruned litter in tea plantations releases a large amount of F back into the soil. However, the effect of pruned litter return on soil F bioavailability has remained unclear. We investigated the decomposition dynamics of pruned litter from four tea varieties (Chuannong Huangyazao, Chuancha No. 3, Chuanmu No. 217 and C. sinensis 'Fuding Dabaicha') and its effect on soil F bioavailability. The decomposition of pruned litter occurred in two distinct periods, with an early period of rapid decomposition during the first 120 days, releasing 26-33 % of F, followed by a late period of slow decomposition during 120-360 days, releasing 2-9 % of F. The decomposition of pruned litter enhanced soil F bioavailability by increasing the concentrations of soil water-soluble F (WS-F), exchangeable F (EX-F), and organic matter-bound F (OR-F). The increase in WS-F, EX-F, and OR-F concentrations was higher than the amount of F released from pruned litter, suggesting that the increases in soil F availability did not solely originate from the release of F from pruned litter. The findings reveal the pathway of pruned litter decomposition priming soil F bioavailability through both the direct release of F and transformation from other fractions. Furthermore, the traits (C, N, lignin, and cellulose) of pruned litter from different tea varieties were the dominant factors controlling F release and soil F bioavailability. Compared with other tea varieties, the pruned litter of Chuanmu No. 217 with low lignin and cellulose content promoted higher mass loss and F release, resulting in the highest soil F bioavailability. These findings provide new insights into the mechanisms underlying the accumulation of bioavailable F in soil. These insights offer valuable support for devising effective management strategies for the incorporation of pruned litter into soil.

13.
J Hazard Mater ; 460: 132276, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625294

RESUMO

Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.


Assuntos
Oryza , Cádmio , Parede Celular , Córtex Cerebral , Transporte de Íons
14.
Oncologist ; 28(9): e765-e773, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37177980

RESUMO

BACKGROUND: Studies are needed to assess risk factors pertinent to the incidence of secondary malignancies among childhood and adolescent lymphoma survivors. We aimed to identify risk factors pertinent to the incidence of secondary malignancies and subsequently establish a clinically practical predictive nomogram. METHODS: A total of 5561 patients who were diagnosed with primary lymphoma below the age of 20 years between 1975 and 2013 and survived for at least 5 years were identified. Standardized incidence ratio (SIR) and excess risk (ER) analysis were performed by sex, age, and year when primary lymphoma was diagnosed, sites and types of primary lymphoma, and therapy strategies. Univariable and multivariable logistic regression were used to identify independent risk factors for adolescent and childhood lymphoma-related secondary malignancies. Based on 5 factors (age, time from lymphoma diagnosis, gender, lymphoma type, and therapy), a nomogram for predicting the risk of a secondary malignancy for patients with childhood and adolescent primary lymphoma was established. RESULTS: Among 5561 lymphoma survivors, 424 developed a secondary malignancy. Females (SIR = 5.34, 95% CI, 4.73-5.99; ER = 50.58) exhibited a higher SIR and ER than males (SIR = 3.28, 95% CI, 2.76-3.87; ER = 15.53). Blacks were at a higher risk than Caucasians or others. Nodular lymphocyte-predominant Hodgkin lymphoma survivors exhibited typically high SIR (13.13, 95% CI, 6-24.92) and ER (54.79) among all lymphoma classifications. Lymphoma survivors who underwent radiotherapy, whether they received chemotherapy or not, had typically higher SIR and ER. Among all types of secondary malignancies, "bone and joint neoplasms" (SIR = 11.07, 95% CI, 5.52-19.81) and "soft tissue neoplasms" (SIR = 12.27, 95% CI, 7.59-18.76) presented significantly high SIR whereas "breast cancer" and "endocrine cancer" associated with higher ER. The median diagnosis age of secondary malignancies was 36 years old, and the median time interval between the diagnosis of two malignancies was 23 years. A nomogram was constructed to predict the risk of secondary malignancies in patients diagnosed with primary lymphoma before 20 years of age. After internal validation, the AUC and C-index of the nomogram are 0.804 and 0.804, respectively. CONCLUSION AND RELEVANCE: The established nomogram provides a convenient and reliable tool for predicting the risk of a secondary malignancy among childhood and adolescent lymphoma survivors, concluding significant concern for lymphoma survivors with high-risk estimates.


Assuntos
Neoplasias da Mama , Linfoma , Segunda Neoplasia Primária , Neoplasias , Masculino , Feminino , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Nomogramas , Neoplasias/terapia , Linfoma/epidemiologia , Linfoma/complicações , Sobreviventes , Segunda Neoplasia Primária/epidemiologia , Segunda Neoplasia Primária/etiologia , Fatores de Risco , Incidência , Neoplasias da Mama/complicações
15.
J Hazard Mater ; 448: 130969, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860050

RESUMO

Hydrogen peroxide (H2O2) is a vital signaling molecule in response to cadmium (Cd) stress in plants. However, the role of H2O2 on Cd accumulation in root of different Cd-accumulating rice lines remains unclear. Exogenous H2O2 and 4-hydroxy-TEMPO (H2O2 scavenger) were applied to investigate the physiological and molecular mechanisms of H2O2 on Cd accumulation in the root of a high Cd-accumulating rice line Lu527-8 through hydroponic experiments. Interestingly, it was found Cd concentration in the root of Lu527-8 increased significantly when exposed to exogenous H2O2, while reduced significantly when exposed to 4-hydroxy-TEMPO under Cd stress, proving the role of H2O2 in regulating Cd accumulation in Lu527-8. Lu527-8 showed more Cd and H2O2 accumulation in the roots, along with more Cd accumulation in cell wall and soluble fraction, than the normal rice line Lu527-4. In particular, more pectin accumulation, especially low demethylated pectin, was observed in the root of Lu527-8 when exposed to exogenous H2O2 under Cd stress, resulting in more negative functional groups with greater capacity to binding Cd in the root cell wall of Lu527-8. It indicated that H2O2-induced cell wall modification and vacuolar compartmentalization contributes greatly to more Cd accumulation in the root of the high Cd-accumulating rice line.


Assuntos
Oryza , Peróxido de Hidrogênio , Cádmio , Pectinas
16.
Huan Jing Ke Xue ; 44(3): 1698-1705, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922230

RESUMO

Exploring the effects of one-time amendment treatments on cadmium (Cd)-contaminated farmland soils is beneficial for providing a theoretical basis to effectively prevent Cd pollution in farmland soils and ensure the safe production of crops. Five amendments, including straw biochar, fly ash, sepiolite, white marble powder, and shale (particle size <0.2 mm, application rate 2.25 kg·m-2), were applied to the Cd-contaminated farmland soils. The soil nutrients, pH, soil available Cd, and Cd chemical forms in the soils and grain Cd concentration in the planted crops were determined to investigate the effects and persistence of one-time applications of the five amendments. The results showed that:① the application of the five amendments had little effect on soil nutrient content, but all of them could increase soil pH. Amendment treatments improved the transfer of Cd from the acid extraction fraction to residue fraction and further reduced the Cd availability in the soil. The decreasing amplitudes of straw biochar and white marble powder soil conditioner were 20.42%-22.53%, which was higher than those in the other treatments. ② The grain Cd concentrations in rice and wheat were significantly decreased under the amendment treatments with the decreasing amplitudes of 19.88%-48.77% and 5.06%-24.00%, respectively. The Cd concentrations in rice grains under the treatments of straw biochar, fly ash, and white marble powder soil conditioner were 0.195, 0.196, and 0.223 mg·kg-1, respectively, which were lower than those under the other treatments and were close to or approached the National Standard of Food Safety(GB 2762-2017)(0.2 mg·kg-1). ③ The immobilization effects on Cd in farmland soils were decreasing with time under one-time application of the amendments. The available Cd concentrations in the soil and Cd concentrations in crop grains were still lower than those in the control after three rounds of rice-wheat rotation. The straw biochar and white marble powder soil conditioner had a good and long-term effect on reducing Cd availability in soils and Cd concentrations in crop grain, making them ideal materials for safe production in Cd-contaminated soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Triticum , Cinza de Carvão , Pós/análise , Poluentes do Solo/análise , Agricultura , Carvão Vegetal/química , Solo/química , Grão Comestível/química , Produtos Agrícolas , Carbonato de Cálcio
17.
Technol Cancer Res Treat ; 22: 15330338221150732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740992

RESUMO

Objective: Primary pulmonary sarcoma (PPS) is very rare in terms of incidence, henceforth, the clinical evidence pertinent to the prognosis of PPS is limited. The aim of this study was to construct a nomogram for evaluating the overall survival (OS) of patients diagnosed with PPS based on the stage, lymph node dissection, tumor size and degree of differentiation, and therapies. Methods: A total of 515 patients diagnosed with PPS during the period of 1998 to 2015 were obtained from the surveillance, epidemiology, and end results database and randomly segregated into 'training group' and 'validation group' with a ratio of 7:3. Regression analysis was executed for the training group to obtain the independent factors influencing prognosis of PPS patients. A nomogram was constructed as per the results obtained through multivariate Cox regression analysis subsequently validated using C index, receiver operating characteristic (ROC) curve, and calibration curves. Results: Age, tumor size, histology type, lymph node surgery, summary stage and differentiation grade were independent factors affecting the prognosis. C index was 0.775 and 0.737 for both training group, and validation group, respectively. Areas under the ROC curve of 1-year, 3-year, and 5-year OS were 87.6 (95% CI: 83.8-91.3), 90.1 (95% CI: 86.2-94.0) and 90.6 (95% CI: 85.8-95.4), respectively, in training group. Area under the curve values of 1-year, 3-year, and 5-year OS in the validation group were 83.1 (95% CI: 75.8-90.5), 82.9 (95% CI: 73.2-92.7) and 87.0 (95% CI: 75.9-98.1), respectively. Based on the nomogram, patients were segregated into low-risk group and high-risk group (degree of risk: cutoff score 193). OS of low-risk group was significantly higher when compared to high-risk group (P < .001) in the training group and validation group. Radiotherapy was a risk factor for the low-risk group and adjuvant chemotherapy has not exhibited influence on OS pertinent to low-risk group. However, adjuvant radiotherapy or chemotherapy both significantly improved the prognosis of PPS patients (P < .001) in the high-risk group. Conclusion: Constructed nomogram could have a strong predictive ability with higher accuracy for the prognosis of patients with PPS. Patients at low risk could not benefit from adjuvant radiotherapy or chemotherapy, while the prognosis clearly improved in the high-risk populations treated with either radiotherapy or chemotherapy.


Assuntos
Neoplasias Pulmonares , Sarcoma , Humanos , Nomogramas , Prognóstico , Neoplasias Pulmonares/terapia , Excisão de Linfonodo , Programa de SEER , Estadiamento de Neoplasias
18.
Toxics ; 11(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36851016

RESUMO

Root exudates are tightly linked with cadmium (Cd) uptake by the root and thus affect plant Cd accumulation. A hydroponic experiment was carried out to explore the role of root exudates in Cd accumulation of a low-Cd-accumulating tobacco line (RG11) compared with a high-Cd- accumulating tobacco line (Yuyan5). Greater secretion of organic acids and amino acids by the roots was induced by an exogenous Cd addition in the two tobacco lines. The concentration of organic acid secreted by RG11 was only 51.1~61.0% of that secreted by Yuyan5. RG11 roots secreted more oxalic acid and acetic acid and less tartaric acid, formic acid, malic acid, lactic acid, and succinic acid than Yuyan5 under Cd stress. Oxalic acid accounted for 26.8~28.8% of the total organic acids, being the most common component among the detected organic acids, and was significantly negatively correlated with Cd accumulation in RG11. Propionic acid was only detected in the root exudates of RG11 under Cd stress. Lactic acid was positively linked with Cd accumulation in Yuyan5, being less accumulated in RG11. Similarly, RG11 secreted more amino acids than Yuyan5 under Cd stress. Aspartic acid, serine, and cysteine appeared in RG11 when it was exposed to Cd. Lysine was the most secreted amino acid in RG11 under Cd stress. RG11 roots secreted less lysine, histidine, and valine, but more phenylalanine and methionine than Yuyan5 under Cd stress. The results show that organic acids and amino acids in root exudates play a key role in Cd uptake by the root, and this contribution varied with cultivar/genotype. However, further research is still needed to explore the mechanisms underlying low Cd translocation to the leaf, which may be the key contribution of low Cd accumulation in RG11 to the security of tobacco leaf.

19.
Sci Total Environ ; 856(Pt 2): 159227, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206909

RESUMO

Strategies to increase carbon (C) sequestration in tea plantation soils are pertinent to mitigating global climate change, but little is known about the variation in C sequestration in soils planted with different tea varieties. In the current study, we collected 0-20 and 20-40 cm layer soil samples from a tea plantation planted with four tea varieties (Chuancha No.3 (CC3), Chuanmu No. 217 (CM217), Chuannong Huangyazao (CN), and C. sinensis 'Fuding Dabaicha' (FD)). Soil organic carbon (SOC) stock and composition in the bulk soil and aggregate fractions, as well as the SOC stability index (SI), were investigated. Both SOC stock and composition in the bulk soil or aggregate fractions were variable among the soils after planting different tea varieties. Overall, the highest SOC stock (0-40 cm) was observed in FD soil, followed by CN, CC3, and CM217 soil. This difference was dominated by the SOC stock associated with macroaggregates, and the highest macroaggregate-associated SOC stock was detected in FD soil in both soil layers. Moreover, FD soil showed the highest proportion of macroaggregates in both soil layers, accumulated the greatest recalcitrant organic carbon (ROC) and further contributed to the highest SI values of SOC associated with most aggregate fractions. In contrast, CN topsoil (0-20 cm) accumulated the greatest labile organic carbon (LOC) in most aggregate fractions, which had a positive correlation with the amount of C return by pruning litter. Ultimately, long-term planting of FD promoted macroaggregate formation, and ROC accumulation in aggregates greatly contributed to maintaining high C sequestration in the tea plantation soils and showed a high potential for future C budgets; in contrast, the tea plantation soil planted with CN could be a potential C source because of high C return.


Assuntos
Sequestro de Carbono , Solo , Carbono/análise , Chá , China
20.
Sci Total Environ ; 860: 160486, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436647

RESUMO

Rills are critical venues for the transport of eroded sediments along hillslopes. The sediment transport efficiency and connectivity within hillslopes are affected by the spatiotemporal evolution of rill erosion and morphology. However, the effect of upslope sediment-laden inflow on rill erosion and connectivity remains unclear. This study investigated the variation in rill erosion from the eroded morphology and sediment connectivity using flume scouring experiments. Upslope sediment-laden inflow was simulated considering the upslope terrace areas of 0.15, 0.30, and 0.45 m2 and an upslope inflow of 6 L min-1. The quantity and cross-sectional depth of rills gradually decreased with increasing upslope terrace area. The cross-sectional morphology of rills changed from being V-shaped to U-shaped in the rill erosion process. All of the mean values of the morphological parameters gradually decreased with increasing upslope terrace area, in contrast to the width-depth ratio (Rw/d) and rill density (ρ), which both initially increased and then decreased. The average length, width, and depth of rills were smaller under an upslope terrace area of 0.45 m2 than those under an upslope terrace area of 0.15 m2; they decreased by 2.78 %, 20.67 %, and 33.68 %, respectively. Soil and water loss induced by rill erosion decreased with increasing upslope terrace area. Rills, as major venues for sediment transport on hillslopes, exhibited a higher sediment connectivity (IC) than that observed in interrill areas under the different upslope terrace areas. Rill development resulted in higher erosion between the upslope and downslope parts within rill channels. The variations in Rw/d and ρ were significantly correlated with runoff and eroded sediment yield, which could be used to estimate the rill erosion process under different upslope terrace areas.


Assuntos
Sedimentos Geológicos , Solo , Estudos Transversais , Movimentos da Água , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA