Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Mol Neurobiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520610

RESUMO

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

4.
J Neurooncol ; 167(2): 285-292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381257

RESUMO

PURPOSE: This study retrospectively analyzes cases of diffuse midline glioma treated with radiotherapy, with the aim of investigating the prognosis of the tumor and its influencing factors. METHODS: From January 2018 to November 2022, we treated 64 patients who were pathologically diagnosed with diffuse midline glioma. Among them, 41 underwent surgical resection, and 23 underwent biopsy procedures. All patients received postoperative radiotherapy. We followed up with the patients to determine the overall survival rate and conducted univariate and multivariate analyses on relevant indicators. RESULTS: The median survival time for the entire patient group was 33.3 months, with overall survival rates of 92.9%, 75.4%, and 45.0% at 1 year, 2 years, and 3 years, respectively. Univariate and multivariate analyses indicated that older patients had a better prognosis. CONCLUSION: Patient age is an independent prognostic factor for patients with diffuse midline glioma undergoing radiation therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Glioma/diagnóstico , Glioma/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos
5.
Neurochem Res ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411782

RESUMO

Cerebral ischemic preconditioning (CIP) has been shown to improve brain ischemic tolerance against subsequent lethal ischemia. Reactive astrocytes play important roles in cerebral ischemia-reperfusion. Recent studies have shown that reactive astrocytes can be polarized into neurotoxic A1 phenotype (C3d) and neuroprotective A2 phenotype (S100A10). However, their role in CIP remains unclear. Here, we focused on the role of N-myc downstream-regulated gene 2 (NDRG2) in regulating the transformation of A1/A2 astrocytes and promoting to brain ischemic tolerance induced by CIP. A Sprague Dawley rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) was used. Rats were divided into the following six groups: (1) sham group; (2) CIP group: left middle cerebral artery was blocked for 10 min; (3) MCAO/R group: left middle cerebral artery was blocked for 90 min; (4) CIP + MCAO/R group: CIP was performed 72 h before MCAO/R; (5) AAV-NDRG2 + CIP + MCAO/R group: adeno-associated virus (AAV) carrying NDRG2 was administered 14 days before CIP + MCAO/R; (6) AAV-Ctrl + CIP + MCAO/R group: empty control group. The rats were subjected to neurological evaluation 24 h after the above treatments, and then were sacrificed for 2, 3, 5-triphenyltetraolium chloride staining, thionin staining, immunofluorescence and western blot analysis. In CIP + MCAO/R group, the neurological deficit scores decreased, infarct volume reduced, and neuronal density increased compared with MCAO/R group. Notably, CIP significantly increased S100A10 expression and the number of S100A10+/GFAP+ cells, and also increased NDRG2 expression. MCAO/R significantly decreased S100A10 expression and the number of S100A10+/GFAP+ cells yet increased C3d expression and the number of C3d+/GFAP+ cells and NDRG2 expression, and these trends were reversed by CIP + MCAO/R. Furthermore, over-expression of NDRG2 before CIP + MCAO/R, the C3d expression and the number of C3d+/GFAP+ cells increased, while S100A10 expression and the number of S100A10+/GFAP+ cells decreased. Meanwhile, over-expression of NDRG2 blocked the CIP-induced brain ischemic tolerance. Taken together, these results suggest that CIP exerts neuroprotective effects against ischemic injury by suppressing A1 astrocyte polarization and promoting A2 astrocyte polarization via inhibiting NDRG2 expression.

6.
Chemistry ; 30(26): e202304334, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38388776

RESUMO

Sensing of benzene vapor is a hot spot due to the volatile drastic carcinogen even at trace concentration. However, achieving convenient and rapid detection is still a challenge. As a sort of functional porous material, metal-organic frameworks (MOFs) have been developed as detection sensors by adsorbing benzene vapor and converting it into other signals (fluorescence intensity/wavelength, chemiresistive, weight or color, etc.). Supramolecular interaction between benzene molecules and the host framework, aperture size/shape and structural flexibility are influential factors in the performance of MOF-based sensors. Therefore, enhancing the host-guest interactions between the host framework and benzene molecules, or regulating the diffusion rate of benzene molecules by changing the aperture size/shape and flexibility of the host framework to enhance the detection signal are effective strategies for constructing MOF-based sensors. This concept highlights several types of MOF-based sensors for the detection of benzene vapor.

7.
Mol Neurobiol ; 61(4): 2336-2356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37875707

RESUMO

Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt - 881 and - 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Ratos , Animais , Ratos Wistar , Regulação para Cima , Piroptose , Fator de Transcrição STAT4/metabolismo , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
8.
Mol Neurobiol ; 61(4): 2270-2282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37870679

RESUMO

The morbidity rate of ischemic stroke is increasing annually with the growing aging population in China. Astrocytes are ubiquitous glial cells in the brain and play a crucial role in supporting neuronal function and metabolism. Increasing evidence shows that the impairment or loss of astrocytes contributes to neuronal dysfunction during cerebral ischemic injury. The mitochondrion is increasingly recognized as a key player in regulating astrocyte function. Changes in astrocytic mitochondrial function appear to be closely linked to the homeostasis imbalance defects in glutamate metabolism, Ca2+ regulation, fatty acid metabolism, reactive oxygen species, inflammation, and copper regulation. Here, we discuss the role of astrocytic mitochondria in the pathogenesis of brain ischemic injury and their potential as a therapeutic target.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Humanos , Idoso , Astrócitos/metabolismo , Isquemia Encefálica/patologia , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Mitocôndrias/metabolismo
9.
J Environ Manage ; 351: 119997, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160546

RESUMO

We report a novel modified semi-carbonized fiber (CF) prepared using cotton and acrylic clothes for derisking contaminated water to realize the resource utilization of discarded clothes in wastewater treatment. In this study, amphoteric and auxiliary modifiers were used to modify CFs for preparing amphoteric and amphoteric-auxiliary CFs. The basic physicochemical properties of different modified CFs were determined, and the microscopic morphology of modified CFs was detected. The isothermal adsorption characteristics of Cu(II) and Pb(II) on different modified CFs were investigated by the batch method, and the effect mechanisms of temperature, pH, ionic strength, and material dose were compared. Physicochemical properties and microscopic morphology results proved that amphoteric and auxiliary modifiers were modified on the CF surface and changed the surface properties of CF. The adsorption capacities of Cu(II) and Pb(II) on modified CFs increased with the increase in equilibrium concentration of Cu(II) and Pb(II), and the isotherm was more suitable for Freundlich model fitting than that of the Langmuir model. The maximum adsorption capacities (qm) of Cu(II) and Pb(II) on different modified CFs were 60.72-81.26 mg/g and 102.58-161.72 mg/g, respectively, and presented the trend of amphoteric-auxiliary CFs > amphoteric CFs > CFs. Increasing pH and temperature and decreasing ionic strength and material dose were beneficial to Cu(II) and Pb(II) adsorption. The Cu(II) and Pb(II) adsorption process was a spontaneous, endothermic, and entropy-increasing reaction, and the adsorption rate was controlled by chemisorption. The adsorption amount of amphoteric-auxiliary CFs maintained about 65% of original materials after 3 times of regeneration. Electrostatic attraction, precipitation, complexation, and ion exchange were the main adsorption mechanisms. The cation exchange capacity and total pore volume of modified CFs were key to determining qm of Cu(II) and Pb(II).


Assuntos
Chumbo , Poluentes Químicos da Água , Temperatura , Cátions , Adsorção , Água , Vestuário , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
10.
Sheng Li Xue Bao ; 75(5): 691-702, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37909140

RESUMO

The plateau environment is characterized by low oxygen, low air pressure, low temperature, and strong ultraviolet rays, etc. Chronic obstructive pulmonary disease (COPD) is a preventable and treatable chronic lung disease. High altitude environment increases COPD prevalence, clinical manifestation and mortality. The therapeutic window of theophylline drugs for COPD is narrow, and the high altitude environment has an influence on the pharmacokinetics of the drugs. This review summarizes the differences in the prevalence, mortality, clinical manifestation and clinical symptoms of COPD in the plateau and plain, providing a basis for identifying the risk factors of COPD in the plateau areas. The effects of plateau hypoxic environment on the pharmacokinetics of COPD drugs were also discussed. It can provide a rationale for more effective prevention and treatment of COPD at high altitude.


Assuntos
Altitude , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Oxigênio , Hipóxia
11.
BMC Cancer ; 23(1): 1163, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031068

RESUMO

BACKGROUND: The NOD-, LRR- and pyrin domain­containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS: Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1ß, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS: In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS: The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION: This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).


Assuntos
Neoplasias da Mama , Carcinoma , Embolia , Humanos , Feminino , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Neoplasias da Mama/terapia , Caspase 1/metabolismo , Carcinogênese , Interleucina-1beta/metabolismo
12.
Medicine (Baltimore) ; 102(43): e35726, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904430

RESUMO

BACKGROUND: It was hypothesized that governor vessel moxibustion (GVM) therapy may improve the course of mild to moderate psoriasis (PS) in patients. METHODS: A randomized, controlled clinical trial lasting 40 days was conducted at the Shaanxi Provincial Hospital of Chinese Medicine. Investigators were blinded to patient groupings. Individuals with mild to moderate PS ranging in age from 18 to 70 years were enrolled. GVM therapy was administered one every 10 days for 40 days with 1.5 hours on the governor meridian in the GVM therapy group. The PS area and severity index (PASI) and dermatological life quality index (DLQI) scores were monitored before and after treatment. RESULTS: There was a significant reduction in the mean PASI score in the GVM therapy group of 0.76 points (2.37 [2.61]; SE, 0.39) after 40 days of treatment compared with the control group (3.12 [2.12], SE, 0.32) (P < .01). There were also significantly greater changes in the DLQI scores of the GVM therapy group (4.23 [2.25]; SE, 0.34) compared with those in the control group (8.91 [3.85]; SE, 0.59) (P < .001). CONCLUSION: GVM therapy effectively reduced both PASI and DLQI scores in patients with mild to moderate PS.


Assuntos
Medicina Tradicional do Leste Asiático , Moxibustão , Psoríase , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Qualidade de Vida , Psoríase/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
13.
J Neurochem ; 166(2): 215-232, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284938

RESUMO

Abnormal activation of the extrasynaptic N-methyl-d-aspartate receptor (NMDAR) contributes to the pathogenesis of Alzheimer's disease (AD). Ceftriaxone (Cef) can improve cognitive impairment by upregulating glutamate transporter-1 and promoting the glutamate-glutamine cycle in an AD mouse model. This study aimed to investigate the effects of Cef on synaptic plasticity and cognitive-behavioral impairment and to unravel the associated underlying mechanisms. We used an APPswe/PS1dE9 (APP/PS1) mouse model of AD in this study. Extrasynaptic components from hippocampal tissue homogenates were isolated using density gradient centrifugation. Western blot was performed to evaluate the expressions of extrasynaptic NMDAR and its downstream elements. Intracerebroventricular injections of adeno-associated virus (AAV)-striatal enriched tyrosine phosphatase 61 (STEP61 ) and AAV-STEP61 -shRNA were used to modulate the expressions of STEP61 and extrasynaptic NMDAR. Long-term potentiation (LTP) and Morris water maze (MWM) tests were performed to evaluate the synaptic plasticity and cognitive function. The results showed that the expressions of GluN2B and GluN2BTyr1472 in the extrasynaptic fraction were upregulated in AD mice. Cef treatment effectively prevented the upregulation of GluN2B and GluN2BTyr1472 expressions. It also prevented changes in the downstream signals of extrasynaptic NMDAR, including increased expressions of m-calpain and phosphorylated p38 MAPK in AD mice. Furthermore, STEP61 upregulation enhanced, whereas STEP61 downregulation reduced the Cef-induced inhibition of the expressions of GluN2B, GluN2BTyr1472 , and p38 MAPK in the AD mice. Similarly, STEP61 modulation affected Cef-induced improvements in induction of LTP and performance in MWM tests. In conclusion, Cef improved synaptic plasticity and cognitive behavioral impairment in APP/PS1 AD mice by inhibiting the overactivation of extrasynaptic NMDAR and STEP61 cleavage due to extrasynaptic NMDAR activation.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Cognição , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Brain Res Bull ; 200: 110683, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301482

RESUMO

Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ceftriaxona/farmacologia , Microglia/metabolismo , Sinaptofisina/metabolismo , Camundongos Transgênicos , Hipocampo/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Macrófagos/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo
15.
Clin Transl Med ; 13(6): e1289, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37264743

RESUMO

BACKGROUND: HCFC1 encodes transcriptional co-regulator HCF-1, which undergoes an unusual proteolytic maturation at a centrally located proteolysis domain. HCFC1 variants were associated with X-linked cobalamin metabolism disorders and mental retardation-3. This study aimed to explore the role of HCFC1 variants in common epilepsy and the mechanism underlying phenotype heterogeneity. METHODS: Whole-exome sequencing was performed in a cohort of 313 patients with idiopathic partial (focal) epilepsy. Functional studies determined the effects of the variants on the proteolytic maturation of HCF-1, cell proliferation and MMACHC expression. The role of HCFC1 variants in partial epilepsy was validated in another cohort from multiple centers. RESULTS: We identified seven hemizygous HCFC1 variants in 11 cases and confirmed the finding in the validation cohort with additional 13 cases and six more hemizygous variants. All patients showed partial epilepsies with favorable outcome. None of them had cobalamin disorders. Functional studies demonstrated that the variants in the proteolysis domain impaired the maturation by disrupting the cleavage process with loss of inhibition of cell growth but did not affect MMACHC expression that was associated with cobalamin disorder. The degree of functional impairment was correlated with the severity of phenotype. Further analysis demonstrated that variants within the proteolysis domain were associated with common and mild partial epilepsy, whereas those in the kelch domain were associated with cobalamin disorder featured by severe and even fatal epileptic encephalopathy, and those in the basic and acidic domains were associated with mainly intellectual disability. CONCLUSION: HCFC1 is potentially a candidate gene for common partial epilepsy with distinct underlying mechanism of proteolysis dysfunction. The HCF-1 domains played distinct functional roles and were associated with different clinical phenotypes, suggesting a sub-molecular effect. The distinct difference between cobalamin disorders and idiopathic partial epilepsy in phenotype and pathogenic mechanism, implied a clinical significance in early diagnosis and management.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Proteólise , Epilepsia/genética , Vitamina B 12/genética , Vitamina B 12/metabolismo , Regulação da Expressão Gênica , Epilepsias Parciais/genética , Oxirredutases/genética , Oxirredutases/metabolismo
16.
Ultrasound Med Biol ; 49(8): 1811-1816, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37225609

RESUMO

OBJECTIVE: The aim of the work described here was to measure the characteristics of viscoelasticity and fluidity in a mouse model of hepatic steatosis and inflammation using a nano-indentation test and the Kelvin-Voigt fractional derivative (KVFD) model and to explore the viscoelasticity and fluidity characteristics in mice with different degrees of hepatic steatosis with inflammation. METHODS: Twenty-five ApoE mice were randomly divided into an experimental high-fat diet group (n = 15) and an ordinary-food control group (n = 10), then subdivided into four subgroups based on pathological degree of hepatic steatosis: S0 (normal), S1 (mild), S2 (moderate) and S3 (severe). The 25 liver specimens from these mice were evaluated by a slope-keeping relaxation nano-indentation test. RESULTS: Elasticity (E0) was significantly higher in the S3 group than in the S1 and S2 groups, while fluidity (α) and viscosity (τ) were significantly lower in S3 than in S1 and S2 (all p values < 0.05). The following cutoff values for the diagnosis of hepatic steatosis >33% with inflammation were also determined: E0 > 85.01 Pa (area under the curve [AUC]: 0.917, 95% confidence interval [CI]: 0.735-0.989), α ≤ 0.38 (AUC: 0.885, 95% CI: 0.695-0.977),\ and τ ≤ 3.92 (AUC: 0.813, 95% CI: 0.607-0.939). CONCLUSION: Increases in the degree of hepatic steatosis with inflammation in mice paralleled gradual increases in the stiffness of the liver and gradual decreases in the fluidity and viscosity of the liver.


Assuntos
Técnicas de Imagem por Elasticidade , Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Biópsia , Fígado Gorduroso/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Inflamação , Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica/patologia , Curva ROC
17.
Sheng Li Xue Bao ; 75(2): 255-268, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089100

RESUMO

Cerebral hypoxia often brings irreversible damage to the central nervous system, which seriously endangers human health. It is of great significance to further explore the mechanism of hypoxia-associated brain injury. As a programmed cell death, ferroptosis mainly manifests as cell death caused by excessive accumulation of iron-dependent lipid peroxides. It is associated with abnormal glutathione metabolism, lipid peroxidation and iron metabolism, and is involved in the occurrence and development of various diseases. Studies have found that ferroptosis plays an important role in hypoxia-associated brain injury. This review summarizes the mechanism of ferroptosis, and describes its research progress in cerebral ischemia reperfusion injury, neonatal hypoxic-ischemic brain damage, obstructive sleep apnea-induced brain injury and high-altitude hypoxic brain injury.


Assuntos
Lesões Encefálicas , Ferroptose , Hipóxia-Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Recém-Nascido , Apoptose , Ferro
18.
Angew Chem Int Ed Engl ; 62(24): e202303500, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37069464

RESUMO

Indoor detection of volatile organic compounds (VOCs) concentration is necessary due to the serious toxicity hazards even at trace level. However, physisorbents usually exhibit weak interactions especially in the presence of trace concentrations of VOCs, thus exhibiting poor responsive signal. Herein, we report a new flexible metal-organic framework (MOF) that exhibits interesting pore-opening behavior after immersing in H2 O. The pore-opening phase shows significant (≈116 folds) and extremely fast (<1 minute) fluorescence enhancement after being exposed to saturated benzene vapor. The limit of detection concentration for benzene vapor can be calculated as 0.133 mg L-1 . Thus this material represents the first MOF to achieve visual detection of trace benzene vapor by the naked eyes. Theoretical calculations and single-crystal structure reveal that the special "bilateral π-π stacking" interactions between the host and guest, which facilitate electron transfer and greatly enhance the intensity of fluorescence.

20.
Cell Mol Neurobiol ; 43(3): 1355-1367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35900650

RESUMO

Cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance protects neurons from subsequent lethal ischemic insult. However, the specific mechanisms underlying CIP remain unclear. In the present study, we explored the hypothesis that peroxisome proliferator-activated receptor gamma (PPARγ) participates in the upregulation of Klotho during the induction of brain ischemic tolerance by CIP. First we investigated the expression of Klotho during the brain ischemic tolerance induced by CIP. Lethal ischemia significantly decreased Klotho expression from 6 h to 7 days, while CIP significantly increased Klotho expression from 12 h to 7 days in the hippocampal CA1 region. Inhibition of Klotho expression by its shRNA blocked the neuroprotection induced by CIP. These results indicate that Klotho participates in brain ischemic tolerance by CIP. Furthermore, we tested the role of PPARγ in regulating Klotho expression after CIP. CIP caused PPARγ protein translocation to the nucleus in neurons in the CA1 region of the hippocampus. Pretreatment with GW9962, a PPARγ inhibitor, significantly attenuated the upregulation of Klotho protein and blocked the brain ischemic tolerance induced by CIP. Taken together, it can be concluded that Klotho upregulation via PPARγ contributes to the induction of brain ischemic tolerance by CIP.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Animais , Ratos , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal , Isquemia , PPAR gama/metabolismo , Ratos Wistar , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA