Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Front Mol Neurosci ; 17: 1417567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39282658

RESUMO

Introduction: Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods: Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion: We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion: In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.

2.
Adv Sci (Weinh) ; : e2407538, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283031

RESUMO

Amorphous carbon holds great promise as anode material for sodium-ion batteries due to its cost-effectiveness and good performance. However, its sodium storage mechanism, particularly the insertion process and origin of plateau capacity, remains controversial. Here, an extended adsorption/insertion-filling sodium storage mechanism is proposed using petroleum coke-derived amorphous carbon as a multi-microcrystalline model. Combining in situ X-ray diffraction, in situ Raman, theoretical calculations, and neutron scattering, the effective storage form and location of sodium ions in amorphous carbon are revealed. The sodium adsorption at defect sites leads to a high-potential sloping capacity. The sodium insertion process occurs in both the pseudo-graphite phase (d002 > 0.370 nm) and graphite-like phase (0.345 ≤ d002 < 0.370 nm) rather than the graphite phase, contributing to low-potential sloping capacity. The sodium filling into accessible closed pores forms quasi-metallic sodium clusters, contributing to plateau capacity. The threshold of the effective interlayer spacing for sodium insertion is extended to 0.345 nm, breaking the consensus of insertion interlayer threshold and enhancing understanding of closed pore filling. The extended adsorption/insertion-filling mechanism explains the sodium storage behavior of amorphous carbon with different microstructures, providing theoretical guidance for the rational design of high-performance amorphous carbon anodes.

3.
BMC Med Imaging ; 24(1): 219, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160476

RESUMO

BACKGROUND: Flatfoot is a condition resulting from complex three-dimensional (3D) morphological changes. Most Previous studies have been constrained by using two-dimensional radiographs and non-weight-bearing conditions. The deformity in flatfoot is associated with the 3D morphology of the bone. These morphological changes affect the force line conduction of the hindfoot/midfoot/forefoot, leading to further morphological alterations. Given that a two-dimensional plane axis overlooks the 3D structural information, it is essential to measure the 3D model of the entire foot in conjunction with the definition under the standing position. This study aims to analyze the morphological changes in flatfoot using 3D measurements from weight-bearing CT (WBCT). METHOD: In this retrospective comparative our CT database was searched between 4-2021 and 3-2022. Following inclusion criteria were used: Patients were required to exhibit clinical symptoms suggestive of flatfoot, including painful swelling of the medial plantar area or abnormal gait, corroborated by clinical examination and confirmatory radiological findings on CT or MRI. Healthy participants were required to be free of any foot diseases or conditions affecting lower limb movement. After applying the exclusion criteria (Flatfoot with other foot diseases), CT scans (mean age = 20.9375, SD = 16.1) confirmed eligible for further analysis. The distance, angle in sagittal/transverse/coronal planes, and volume of the two groups were compared on reconstructed 3D models using the t-test. Logistic regression was used to identify flatfoot risk factors, which were then analyzed using receiver operating characteristic curves and nomogram. RESULT: The flatfoot group exhibited significantly lower values for calcaneofibular distance (p = 0.001), sagittal and transverse calcaneal inclination angle (p < 0.001), medial column height (p < 0.001), sagittal talonavicular coverage angle (p < 0.001), and sagittal (p < 0.001) and transverse (p = 0.015) Hibb angle. In contrast, the sagittal lateral talocalcaneal angle (p = 0.013), sagittal (p < 0.001) and transverse (p = 0.004) talocalcaneal angle, transverse talonavicular coverage angle (p < 0.001), coronal Hibb angle (p < 0.001), and sagittal (p < 0.001) and transverse (p = 0.001) Meary's angle were significantly higher in the flatfoot group. The sagittal Hibb angle (B = - 0.379, OR = 0.684) and medial column height (B = - 0.990, OR = 0.372) were identified as significant risk factors for acquiring a flatfoot. CONCLUSION: The findings validate the 3D spatial position alterations in flatfoot. These include the abduction of the forefoot and prolapse of the first metatarsal proximal, the arch collapsed, subluxation of the talonavicular joint in the midfoot, adduction and valgus of the calcaneus, adduction and plantar ward movement of the talus in the hindfoot, along with the first metatarsal's abduction and dorsiflexion in the forefoot.


Assuntos
Pé Chato , Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Suporte de Carga , Pé Chato/diagnóstico por imagem , Humanos , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Estudos Retrospectivos , Feminino , Masculino , Adulto Jovem , Adulto , Adolescente , Pé/diagnóstico por imagem
4.
Small Methods ; : e2400423, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129659

RESUMO

Ringy nanostructures are amazing materials, displaying unique optical, magnetic, and electronic properties highly related to their dimensions. A strategy capable of continuously tailoring the diameter of nanorings is the key to elucidating their structure-function relationship. Herein, a method of bi-component micellar-configuration-transformation induced by hydrophobicity for the synthesis of nanorings with diameters ranging from submicron (≈143 nm) to micron (≈4.8 µm) and their carbonaceous analogs is established. Remarkably, the nanorings fabricated with this liquid phase strategy achieve the record for the largest diameter span. Through varying the molecular lengths of fatty alcohols and copolymers, shortening the molecular length of fatty alcohol can swell the primary micelles, improve the exposure of hydrophobic component and boost the assembly kinetics for ultra-large nanorings is shown here. On the other hand, shortening the molecular length of the copolymer will give rise to ultra-small nanorings by reducing the size of primary micelles and shortening the assembly time. When assembling the nanorings into monolayer arrays and then depositing Au, such substrate displays enhanced surface-enhanced Raman scattering (SERS) performance. This research develops a facile method for the controllable synthesis of ringy materials with multiscale tunable diameters and may inspire more interesting applications in physics, optical, and sensors.

5.
ACS Appl Mater Interfaces ; 16(33): 43548-43555, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105758

RESUMO

Substituting electrochemically active elements such as Li and Mg in P2-type layered sodium oxide is an effective strategy for developing competitive cathode materials for sodium-ion batteries. However, the lack of atomic-level understanding regarding the distribution of substitution positions complicates the comprehension of the roles of substituting atoms and the mechanism of sodium-ion intercalation. In this study, we identified the stable configurations of Na in Na0.75Ni0.3Mn0.7O2 and Na0.75Li0.15Mg0.05Ni0.1Mn0.7O2 materials using the site exclusion method. Through simulating the complete charging process for both materials, the structure evolution of the cathodes during the cycling and the impact of the partial substitution of Ni elements by Li and Mg atoms were comprehensively elucidated. Our findings revealed that Mg atoms effectively regulate the distribution of forces within the materials, essentially serving as supportive pillars within the cathode. Meanwhile, Li atoms efficiently mitigated electron localization, consequently diminishing volume fluctuations during the charging process. More importantly, the substitution with Li and Mg atoms could synergistically reduce the interaction between transition metals and sodium ions, thereby reducing the diffusion energy barrier of Na ions. This study not only enhances the comprehension of substituted metal atoms in P2 layered oxides but also offers new insights for the development of sodium-ion cathode materials.

6.
Int J Mol Med ; 54(4)2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39092585

RESUMO

TMEM16 proteins, which function as Ca2+­activated Cl­ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl­ channels can be used for the molecule­based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator­based treatment methods.


Assuntos
Anoctaminas , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/metabolismo , Anoctaminas/genética , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Terapia de Alvo Molecular , Sinalização do Cálcio/efeitos dos fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-39067031

RESUMO

BACKGROUND: Arthroscopy-assisted closed reduction and percutaneous internal fixation is a minimally invasive technique for medial malleolus fracture treatment. The purpose of the study was to assess the quality and functional outcomes of this technique. METHODS: Seventy-eight patients with combined medial malleolus fractures were treated with arthroscopy-assisted closed reduction and percutaneous screw fixation technique. The surgical procedure was described in detail; the clinical efficacy of this method was evaluated in terms of time of operation, postoperative complications, and fracture healing time; and functional outcomes were analyzed. RESULTS: All of the patients were followed up for a minimum of 12 months without complications of the medial malleolus wound, and all of the medial malleolus fractures healed within 6 to 8 weeks. At the last follow-up, the visual analog scale scores ranged from 0 to 3 and the American Orthopaedic Foot and Ankle Society ankle and hindfoot function scores ranged from 75 to 95. CONCLUSIONS: Arthroscopy-assisted closed reduction and percutaneous internal fixation makes the treatment of medial malleolus fractures less invasive compared with traditional surgical methods and allows simultaneous exploration and management of the articular surface.


Assuntos
Fraturas do Tornozelo , Artroscopia , Fixação Interna de Fraturas , Humanos , Artroscopia/métodos , Fixação Interna de Fraturas/métodos , Masculino , Fraturas do Tornozelo/cirurgia , Feminino , Adulto , Pessoa de Meia-Idade , Parafusos Ósseos , Resultado do Tratamento , Consolidação da Fratura/fisiologia , Adulto Jovem , Estudos Retrospectivos , Redução Fechada/métodos , Idoso , Seguimentos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos
8.
Angew Chem Int Ed Engl ; : e202410835, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044707

RESUMO

Propane dehydrogenation (PDH) is crucial for propylene production, but commercially employed Pt-based catalysts face susceptibility to deactivation due to the Pt sintering during reaction and regeneration steps. Here, we report a SiO2 supported nanometric (MnCoCuZnPt) high-entropy PDH catalyst with high activity and stability. The catalyst exhibited a super high propane conversion of 56.6% with 94% selectivity of propylene at 600 °C. The propylene productivity reached 68.5 molC3H6·gPt-1·h-1, nearly three times that of Pt/SiO2 (23.5 molC3H6·gPt-1·h-1) under a weight hourly space velocity of 60 h-1. In a high-entropy nanoparticle, Pt atoms were atomically dispersed through coordination with other metals and exhibited a positive charge, thereby showcasing remarkable catalytic activity. The high-entropy effect contributes to the catalyst a superior stability with a low deactivation constant of 0.0004 h-1 during 200 hours of reaction under the industrial gas composition at 550 °C. Such high-entropy PDH catalyst is easy regenerated through simple air combustion of deposited coke. After the fourth consecutive regeneration cycle, satisfactory catalytic stability was observed, and the element distribution of spent catalysts almost returned to their initial state, with no detectable Pt sintering. This work provides new insights into designing active, stable, and regenerable novel PDH catalysts.

9.
Front Surg ; 11: 1404513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859999

RESUMO

Objective: To investigate the short-term clinical efficacy of robot-assisted retrograde drilling and arthroscopic microfracture for osteochondral lesions of the talus (OCLT). Methods: This study was divided into two groups: experimental group: robot-assisted retrograde drilling group; control group: arthroscopic microfracture group. A total of 6 OCLT patients who were treated with robot navigation-assisted retrograde drilling and 10 OCLT patients who were treated with arthroscopic microfracture between October 2020 and October 2021 were retrospectively analyzed. There were 11 males and five females, with a mean age of 36 years. The patients were followed up for 6-12 months to compare the changes in the OCLT lesion area by magnetic resonance imaging (MRI), visual analogue scale/score (VAS) and American Orthopedic Foot and Ankle Society score (AOFAS) before and after surgery. Results: All 16 patients were followed up for an average of 8 months, and no complications such as joint infection, nerve injury, or active bleeding occurred during the follow-up period. Only one patient suffered discomfort involving transient postoperative pain in the operative area, but did not experience long-term numbness or chronic pain. Postoperative MRI revealed that none of the patients had severe signs of osteonecrosis, osteolysis or cystic changes of the talus, with lesion areas smaller than those before surgery. The difference was statistically significant (P < 0.01). The patients in the experimental group showed a more significant improvement in the last 3 months than in the first 3 months of the follow-up period. At the last follow-up, the VAS score was 3 points in the experimental group and 2.2 points in the control group, and the AOFAS score was 88.6 points in the experimental group and 88 points in the control group, all of which were significantly higher than those before operation, and the differences were statistically significant, but there was no statistically significant difference between the groups. Conclusion: Both robot navigation-assisted retrograde drilling and arthroscopic microfracture for bone marrow stimulation (BMS) to treat OCLT in all patients obtained satisfactory effects in the short term. In addition, the follow-up revealed that with excellent efficacy and few complications, robot navigation-assisted retrograde drilling was safe and minimally invasive, and greatly reduced operative time. Consequently, robot navigation-assisted retrograde drilling for BMS was a safe and effective procedure for the treatment of OCLT.

10.
Small ; : e2401965, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739099

RESUMO

Selective separation of ethylene and ethane (C2H4/C2H6) is a formidable challenge due to their close molecular size and boiling point. Compared to industry-used cryogenic distillation, adsorption separation would offer a more energy-efficient solution when an efficient adsorbent is available. Herein, a class of C2H4/C2H6 separation adsorbents, doped carbon molecular sieves (d-CMSs) is reported which are prepared from the polymerization and subsequent carbonization of resorcinol, m-phenylenediamine, and formaldehyde in ethanol solution. The study demonstrated that the polymer precursor themselves can be a versatile platform for modifying the pore structure and surface functional groups of their derived d-CMSs. The high proportion of pores centered at 3.5 Å in d-CMSs contributes significantly to achieving a superior kinetic selectivity of 205 for C2H4/C2H6 separation. The generated pyrrolic-N and pyridinic-N functional sites in d-CMSs contribute to a remarkable elevation of Henry selectivity to 135 due to the enhancement of the surface polarity in d-CMSs. By balancing the synergistic effects of kinetics and thermodynamics, d-CMSs achieve efficient separation of C2H4/C2H6. Polymer-grade C2H4 of 99.71% purity can be achieved with 75% recovery using the devised d-CMSs as reflected in a two-bed vacuum swing adsorption simulation.

11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 273-278, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645844

RESUMO

Osteochondral lesion of the talus (OLT) is a localized cartilage and subchondral bone injury of the talus trochlea. OLT is caused by trauma and other reasons, including osteochondritis dissecans of the talus (OCD) and talus osteochondral tangential fracture. OLT can develop from being asymptomatic to subchondral bone cysts accompanied by deep ankle pain. OLT tends to occur on the medial and lateral sides of the talar vault. OLT seriously affects the patients' life and work and may even lead to disability. Herein, we reviewed advances in the treatment of OLT and the strengths and weaknesses of various treatments. Different treatment methods, including conservative treatments and surgical treatments, can be adopted according to the different subtypes or clinical symptoms of OLT. Conservative treatments mostly relieve symptoms in the short term and only slow down the disease. In recent years, it has been discovered that platelet-rich plasma injection, microfracture, periosteal bone grafting, talar cartilage transplantation, allograft bone transplantation, reverse drilling under robotic navigation, and other methods can achieve considerable benefits when each of these treatment methods is applied. Furthermore, microfracture combined with platelet-rich plasma injections, microfracture combined with cartilage transplantation, and various other treatment methods combined with anterior talofibular ligament repair have all led to good treatment outcomes.


Assuntos
Transplante Ósseo , Tálus , Tálus/lesões , Tálus/cirurgia , Humanos , Transplante Ósseo/métodos , Plasma Rico em Plaquetas , Osteocondrite Dissecante/terapia , Osteocondrite Dissecante/cirurgia , Cartilagem/transplante , Artroplastia Subcondral , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124254, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593542

RESUMO

The rapid detection of epinephrine (EPI) in serum holds immense importance in the early disease diagnosis and regular monitoring. On the basis of the coordination post-synthetic modification (PSM) strategy, a Eu3+ functionalized ZnMOF (Eu3+@ZnMOF) was fabricated by anchoring the Eu3+ ions within the microchannels of ZnMOF as secondary luminescent centers. Benefiting from two independent luminescent centers, the prepared Eu3+@ZnMOF shows great potential as a multi-signal self-calibrating luminescent sensor in visually and efficiently detecting serum EPI levels, with high reliability, fast response time, excellentrecycleability, and low detection limits of 17.8 ng/mL. Additionally, an intelligent sensing system was designed in accurately and reliably detecting serum EPI levels, based on the designed self-calibrating logic gates. Furthermore, the possible sensing mechanisms were elucidated through theoretical calculations as well as spectral overlaps. This work provides an effective and promising strategy for developing MOFs-based self-calibrating intelligent sensing platforms to detect bioactive molecules in bodily fluids.


Assuntos
Epinefrina , Európio , Epinefrina/análise , Epinefrina/sangue , Európio/química , Limite de Detecção , Humanos , Calibragem , Medições Luminescentes/métodos , Espectrometria de Fluorescência , Lógica
13.
Channels (Austin) ; 18(1): 2335467, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38546173

RESUMO

The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.


Assuntos
Canais Iônicos , Dinâmica Mitocondrial , Tamanho Mitocondrial , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais
14.
Pest Manag Sci ; 80(6): 2610-2618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38252693

RESUMO

BACKGROUND: Insect-resistance genetically modified (GM) plants derived from Bacillus thuringiensis (Bt) have been cultivated to control pests, but continuous cultivation of Bt-transgenic plants at large-scale regions leads to the resistance evolution of target insects to transgenic plants. RNA interference (RNAi) technology is considered an effective strategy in delaying the resistance evolution of target insects. RESULTS: We here developed a single transgenic oilseed rape (Brassica napus) line with hairpin RNA of the chitin-synthase 1 gene (CHS1) of Plutella xylostella (hpPxCHS1) and a pyramid transgenic B. napus line harboring hpPxCHS1 and Bt gene (Cry1Ac). Escherichia coli HT115 delivered hpPxCHS1 showed negative effects on the growth of P. xylostella. The single transgenic and pyramid transgenic B. napus significantly reduced the larval weight and length of P. xylostella and increased its lethality rate, with down-regulation expression of the PxCHS1 gene in insects. CONCLUSION: Compared to Bt-transgenic B. napus, pyramid-transgenic B. napus shorted the mortality time of P. xylostella, indicating that RNAi technology synergistic with Bt protein improves the effectiveness of controlling target insects. Our results proved that RNAi can delay the resistance evolution of target insects to Bt-transgenic plants. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias , Brassica napus , Mariposas , Plantas Geneticamente Modificadas , Interferência de RNA , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Brassica napus/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética
15.
Molecules ; 28(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37687103

RESUMO

Developing efficient and sensitive MOF-based luminescence sensors for bioactive molecule detection is of great significance and remains a challenge. Benefiting from favorable chemical and thermal stability, as well as excellent luminescence performance, a porous Zn(II)Ho(III) heterometallic-organic framework (ZnHoMOF) was selected here as a bifunctional luminescence sensor for the early diagnosis of a toluene exposure biomarker of hippuric acid (HA) through "turn-on" luminescence enhancing response and the daily monitoring of NFT/NFZ antibiotics through "turn-off" quenching effects in aqueous media with high sensitivity, acceptable selectivity, good anti-interference, exceptional recyclability performance, and low detection limits (LODs) of 0.7 ppm for HA, 0.04 ppm for NFT, and 0.05 ppm for NFZ. Moreover, the developed sensor was employed to quantify HA in diluted urine samples and NFT/NFZ in natural river water with satisfactory results. In addition, the sensing mechanisms of ZnHoMOF as a dual-response chemosensor in efficient detection of HA and NFT/NFZ antibiotics were conducted from the view of photo-induced electron transfer (PET), as well as inner filter effects (IFEs), with the help of time-dependent density functional theory (TD-DFT) and spectral overlap experiments.


Assuntos
Antibacterianos , Nitrofuranos , Luminescência , Biomarcadores
16.
BMC Med Imaging ; 23(1): 138, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737166

RESUMO

BACKGROUND: This study aimed to develop a computed tomography (CT) model to predict Ki-67 expression in hepatocellular carcinoma (HCC) and to examine the added value of radiomics to clinico-radiological features. METHODS: A total of 208 patients (training set, n = 120; internal test set, n = 51; external validation set, n = 37) with pathologically confirmed HCC who underwent contrast-enhanced CT (CE-CT) within 1 month before surgery were retrospectively included from January 2014 to September 2021. Radiomics features were extracted and selected from three phases of CE-CT images, least absolute shrinkage and selection operator regression (LASSO) was used to select features, and the rad-score was calculated. CE-CT imaging and clinical features were selected using univariate and multivariate analyses, respectively. Three prediction models, including clinic-radiologic (CR) model, rad-score (R) model, and clinic-radiologic-radiomic (CRR) model, were developed and validated using logistic regression analysis. The performance of different models for predicting Ki-67 expression was evaluated using the area under the receiver operating characteristic curve (AUROC) and decision curve analysis (DCA). RESULTS: HCCs with high Ki-67 expression were more likely to have high serum α-fetoprotein levels (P = 0.041, odds ratio [OR] 2.54, 95% confidence interval [CI]: 1.04-6.21), non-rim arterial phase hyperenhancement (P = 0.001, OR 15.13, 95% CI 2.87-79.76), portal vein tumor thrombus (P = 0.035, OR 3.19, 95% CI: 1.08-9.37), and two-trait predictor of venous invasion (P = 0.026, OR 14.04, 95% CI: 1.39-144.32). The CR model achieved relatively good and stable performance compared with the R model (AUC, 0.805 [95% CI: 0.683-0.926] vs. 0.678 [95% CI: 0.536-0.839], P = 0.211; and 0.805 [95% CI: 0.657-0.953] vs. 0.667 [95% CI: 0.495-0.839], P = 0.135) in the internal and external validation sets. After combining the CR model with the R model, the AUC of the CRR model increased to 0.903 (95% CI: 0.849-0.956) in the training set, which was significantly higher than that of the CR model (P = 0.0148). However, no significant differences were found between the CRR and CR models in the internal and external validation sets (P = 0.264 and P = 0.084, respectively). CONCLUSIONS: Preoperative models based on clinical and CE-CT imaging features can be used to predict HCC with high Ki-67 expression accurately. However, radiomics cannot provide added value.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Antígeno Ki-67 , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
17.
PLoS One ; 18(7): e0288037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418416

RESUMO

Virtualization and resource isolation techniques have enabled the efficient sharing of networked resources. How to control network resource allocation accurately and flexibly has gradually become a research hotspot due to the growth in user demands. Therefore, this paper presents a new edge-based virtual network embedding approach to studying this problem that employs a graph edit distance method to accurately control resource usage. In particular, to manage network resources efficiently, we restrict the use conditions of network resources and restrict the structure based on common substructure isomorphism and an improved spider monkey optimization algorithm is employed to prune redundant information from the substrate network. Experimental results showed that the proposed method achieves better performance than existing algorithms in terms of resource management capacity, including energy savings and the revenue-cost ratio.

18.
Eur Radiol ; 33(12): 8936-8947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368104

RESUMO

OBJECTIVES: To evaluate the performance of a radiomics nomogram developed based on gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA) MRI for preoperative prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC), and to identify patients who may benefit from the postoperative adjuvant transarterial chemoembolization (PA-TACE). METHODS: A total of 260 eligible patients were retrospectively enrolled from three hospitals (140, 65, and 55 in training, standardized external, and non-standardized external validation cohort). Radiomics features and image characteristics were extracted from Gd-EOB-DTPA MRI image before hepatectomy for each lesion. In the training cohort, a radiomics nomogram which incorporated the radiomics signature and radiological predictors was developed. The performance of the radiomics nomogram was assessed with respect to discrimination calibration, and clinical usefulness with external validation. A score (m-score) was constructed to stratify the patients and explored whether it could accurately predict patient who benefit from PA-TACE. RESULTS: A radiomics nomogram integrated with the radiomics signature, max-D(iameter) > 5.1 cm, peritumoral low intensity (PTLI), incomplete capsule, and irregular morphology had favorable discrimination in the training cohort (AUC = 0.982), the standardized external validation cohort (AUC = 0.969), and the non-standardized external validation cohort (AUC = 0.981). Decision curve analysis confirmed the clinical usefulness of the novel radiomics nomogram. The log-rank test revealed that PA-TACE significantly decreased the early recurrence in the high-risk group (p = 0.006) with no significant effect in the low-risk group (p = 0.270). CONCLUSIONS: The novel radiomics nomogram combining the radiomics signature and clinical radiological features achieved preoperative non-invasive MVI risk prediction and patient benefit assessment after PA-TACE, which may help clinicians implement more appropriate interventions. CLINICAL RELEVANCE STATEMENT: Our radiomics nomogram could represent a novel biomarker to identify patients who may benefit from the postoperative adjuvant transarterial chemoembolization, which may help clinicians to implement more appropriate interventions and perform individualized precision therapies. KEY POINTS: • The novel radiomics nomogram developed based on Gd-EOB-DTPA MRI achieved preoperative non-invasive MVI risk prediction. • An m-score based on the radiomics nomogram could stratify HCC patients and further identify individuals who may benefit from the PA-TACE. • The radiomics nomogram could help clinicians to implement more appropriate interventions and perform individualized precision therapies.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/irrigação sanguínea , Nomogramas , Estudos Retrospectivos
19.
J Colloid Interface Sci ; 648: 169-180, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301142

RESUMO

Porous alumina has been widely used as catalytic support for industrial processes. Under carbon emission constraints, developing a low-carbon porous aluminum oxide synthesis method is a long-standing challenge for low-carbon technology. Herein, we report a method involving the only use of elements of the aluminum-containing reactants (e.g. sodium aluminate and aluminum chloride), sodium chloride was introduced as the coagulation electrolyte to adjust the precipitation process. Noticeably, the adjustment of the dosages of NaCl would allow us to tailor the textural properties and surface acidity with a volcanic-type change of the assembled alumina coiled plates. As a result, porous alumina with a specific surface area of 412 m2/g, large pore volume of 1.96 cm3/g, and concentrated pore size distribution at 30 nm was obtained. The function of salt on boehmite colloidal nanoparticles was proven by colloid model calculation, dynamic light scattering, and scanning/transmission electron microscopy. Afterward, the synthesized alumina was loaded with PtSn to prepare catalysts for the propane dehydrogenation reaction. The obtained catalysts were active but showed different deactivation behavior that was related to the coke resistance capability of the support. We figure out the correlation between pore structure and the activity of the PtSn catalysts associated with the maximum conversion of 53 % and minimum deactivation constant occurring at the pore diameter around 30 nm of the porous alumina. This work offers new insight into the synthesis of porous alumina.

20.
ChemSusChem ; 16(17): e202300493, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158778

RESUMO

Dual-ion battery is a new type of battery in which both anions and cations participate in the energy storage process. However, this unique battery configuration imposes high requirements on the cathode, which typically presents a poor rate performance due to the sluggish diffusion dynamics and intercalation reaction kinetics of anions. Herein, we report petroleum coke-based soft carbon as the cathode for dual-ion batteries, exhibiting a superior rate performance with a specific capacity of 96 mAh g-1 at a rate of 2 C and 72 mAh g-1 remained even at 50 C. In situ XRD and Raman demonstrate that the anions can directly form lower-stage graphite intercalation compounds during the charge process owing to the surface effect, skipping the long evolutionary process from higher to lower stage, thus significantly improving the rate performance. This study highlights the impact of the surface effect and provides a promising perspective for dual-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA