Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Anal Chem ; 94(2): 901-908, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34958555

RESUMO

GSH, Cys, Hcy, and H2S are important biothiols and play important roles in the living systems. Quantitative and simultaneous determination of these biothiols under physiological conditions is still a challenge. Herein, we developed an effective 19F-reactive tag that readily interacts with these four biothiols for the generation of stable thioether products that have distinguishable 19F-chemical shifts. These thioester compounds encode the characteristic fingerprint profiles of each biothiols, allowing one to simultaneously quantify and determine these biothiols by 1D 19F NMR spectroscopy. The intra-/extracellular GSH in live cells was assessed by the established strategy, and remarkable variations in the GSH stability were determined between the normal mammalian cells and cancer cells. It is notable that GSH hydrolyzes efficiently in the out-membrane of the cancer cells and the lysates. In contrast, GSH remains stable in the tested normal cells.


Assuntos
Cisteína , Glutationa , Animais , Corantes Fluorescentes/química , Homocisteína , Espectrometria de Fluorescência/métodos
2.
Chem Commun (Camb) ; 57(97): 13154-13157, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812443

RESUMO

A robust method to identify and quantify amino acids close to physiological conditions by 1D 19F NMR was established. Each 19F-derivatized amino acid has its characteristic chemical-shift profile that is readily identified in the mixture of amino acids or in biofluids including fetal bovine serum and cell lysates. The method shows great potential in metabolomics and biochemical analysis.


Assuntos
Aminoácidos/análise , Líquidos Corporais/química , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Animais , Bovinos , Flúor , Estrutura Molecular
3.
J Phys Chem Lett ; 11(21): 9493-9500, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108729

RESUMO

Site-specific labeling of proteins with a paramagnetic tag is an efficient way to provide atomic-resolution information about the dynamics, interactions, and structures of the proteins and protein-ligand complexes. The paramagnetic effects manifested in NMR spectroscopy generally contain paramagnetic relaxation enhancement, pseudocontact shifts (PCSs), and residual dipolar coupling (RDC), and these effects correlate closely with the flexibility of protein-tag conjugates. The rigidity of the paramagnetic tag is greatly important in decoding the structural details of macromolecular complexes, because paramagnetic averaging reduces the PCSs and RDCs. Here we show that the dynamic exchange of the metal chelating moiety is a key factor in determining the rigidity of the paramagnetic tag in the protein conjugates. Decreasing the conformational exchange rates in the metal chelating moiety greatly minimizes the paramagnetic averaging and thus increases PCSs and RDCs. This effect has been demonstrated in an open-chain tag, Py-l-Cys-DTPA, which generates large PCSs and RDCs that are comparable to those of the reported cyclic DOTA-like tags. The proposed route offers a unique way to design suitable paramagnetic tags for applications in biological systems.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Indicadores e Reagentes/química , Elementos da Série dos Lantanídeos/química , Ubiquitina/química , Sítios de Ligação , Compostos Heterocíclicos com 1 Anel/química , Cinética , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ácido Pentético/química , Ligação Proteica , Conformação Proteica
4.
Proc Natl Acad Sci U S A ; 117(34): 20566-20575, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788347

RESUMO

The complexity of the cellular medium can affect proteins' properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer-monomer dissociation constant KD was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.


Assuntos
Multimerização Proteica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Conformação Proteica
5.
J Phys Chem B ; 123(5): 1050-1059, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620198

RESUMO

Double electron-electron resonance (DEER) measures distances between spin labels attached at well-defined sites in a protein and thus has the potential to report on conformational states of proteins in cells. In this work, we evaluate the suitability of the small and rigid 4PS-PyMTA-Gd(III) spin label for in-cell distance measurements. Three ubiquitin double mutants were labeled with 4PS-PyMTA-Gd(III) and delivered into human HeLa cells by electroporation (EP) and hypotonic swelling (HS). Gd(III)-Gd(III) DEER measurements were carried out on cells frozen after different incubation times, following delivery to test the stability of the spin label inside the cell. For both delivery methods, it was possible to derive distance distributions up to 12 h after delivery, although we observed a decrease in the amount of the delivered protein with time. Surprisingly, only one mutant reported a significant change in the distance distribution with time and only for HS delivery. On the basis of in vitro exchange experiments with Mn(II) and comparison with the same mutant labeled with BrPSPy-DO3MA-Gd(III) and considering the presence of Mn(II) in the cell, we hypothesized that the change occurred as a consequence of partial Gd(III)/Mn(II) exchange with endogenous Mn(II). These experiments also showed that the relative Gd(III)/Mn(II) binding affinity depends on the labeling site in the protein, which accounts for the lack of change with the other mutants delivered under HS conditions. We conclude that 4PS-PyMTA-Gd(III) is a good spin label for in-cell DEER for delivery by EP, but caution should be taken when HS is used.


Assuntos
Complexos de Coordenação/química , Marcadores de Spin , Ubiquitina/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Gadolínio/química , Células HeLa , Humanos , Manganês/química , Mutação , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA