Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.281
Filtrar
1.
PLoS One ; 19(5): e0302656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718081

RESUMO

The rapid growth of traffic trajectory data and the development of positioning technology have driven the demand for its analysis. However, in the current application scenarios, there are some problems such as the deviation between positioning data and real roads and low accuracy of existing trajectory data traffic prediction models. Therefore, a map matching algorithm based on hidden Markov models is proposed in this study. The algorithm starts from the global route, selects K nearest candidate paths, and identifies candidate points through the candidate paths. It uses changes in speed, angle, and other information to generate a state transition matrix that match trajectory points to the actual route. When processing trajectory data in the experiment, K = 5 is selected as the optimal value, the algorithm takes 51 ms and the accuracy is 95.3%. The algorithm performed well in a variety of road conditions, especially in parallel and mixed road sections, with an accuracy rate of more than 96%. Although the time loss of this algorithm is slightly increased compared with the traditional algorithm, its accuracy is stable. Under different road conditions, the accuracy of the algorithm is 98.3%, 97.5%, 94.8% and 96%, respectively. The accuracy of the algorithm based on traditional hidden Markov models is 95.9%, 95.7%, 95.4% and 94.6%, respectively. It can be seen that the accuracy of the algorithm designed has higher precision. The experiment proves that the map matching algorithms based on hidden Markov models is superior to other algorithms in terms of matching accuracy. This study makes the processing of traffic trajectory data more accurate.


Assuntos
Algoritmos , Cadeias de Markov , Humanos , Análise de Dados
2.
Int J Ophthalmol ; 17(3): 596-602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721520

RESUMO

AIM: To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty (SLAK) with corneal crosslinking (CXL) on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis (FS-LASIK). METHODS: A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo. The lenticules were collected from patients undertaking small incision lenticule extraction (SMILE) for the correction of myopia. Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength. RESULTS: All surgeries were conducted successfully with no significant complications. Their best corrected visual acuity (BCVA) ranged from 0.05 to 0.8-2 before surgery. The pre-operational total corneal thickness ranged from 345-404 µm and maximum keratometry (Kmax) ranged from 50.8 to 86.3. After the combination surgery, both the corneal keratometry (range 55.9 to 92.8) and total corneal thickness (range 413-482 µm) significantly increased. Four out of 5 patients had improvement of corneal biomechanical parameters (reflected by stiffness parameter A1 in Corvis ST). However, 3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze. Despite the onset of corneal edema right after SLAK, the corneal topography and thickness generally stabilized after 3mo. CONCLUSION: SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia. Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.

3.
Adv Sci (Weinh) ; : e2401629, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721863

RESUMO

Low-temperature rechargeable aqueous zinc metal batteries (AZMBs) as highly promising candidates for energy storage are largely hindered by huge desolvation energy barriers and depressive Zn2+ migration kinetics. In this work, a superfast zincophilic ion conductor of layered zinc silicate nanosheet (LZS) is constructed on a metallic Zn surface, as an artificial layer and ion diffusion accelerator. The experimental and simulation results reveal the zincophilic ability and layer structure of LZS not only promote the desolvation kinetics of [Zn(H2O)6]2+ but also accelerate the Zn2+ transport kinetics across the anode/electrolyte interface, guiding uniform Zn deposition. Benefiting from these features, the LZS-modified Zn anodes showcase long-time stability (over 3300 h) and high Coulombic efficiency with ≈99.8% at 2 mA cm-2, respectively. Even reducing the environment temperature down to 0 °C, ultralong cycling stability up to 3600 h and a distinguished rate performance are realized. Consequently, the assembled Zn@LZS//V2O5-x full cells deliver superior cyclic stability (344.5 mAh g-1 after 200 cycles at 1 A g-1) and rate capability (285.3 mAh g-1 at 10 A g-1) together with a low self-discharge rate, highlighting the bright future of low-temperature AZMBs.

4.
Virus Genes ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722491

RESUMO

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38722819

RESUMO

CONTEXT: X-linked hypophosphatemia (XLH) is a rare metabolic bone disease caused by inactivation mutations in the PHEX gene. Despite the extensive number of reported PHEX variants, only a few cases of chromosomal abnormalities have been documented. OBJECTIVE: We aimed to identify the pathogenic variants in six unrelated families with a clinical diagnosis of XLH and to propose a genetic workflow for hypophosphatemia patients suspected of XLH. METHODS: Multiple genetic testing assays were used to analyze the six families' genetic profiles, including whole exome sequencing, multiplex ligation-dependent probe amplification, whole genome sequencing, reverse transcript polymerase chain reaction, Sanger sequencing, and karyotyping. RESULTS: The study identified six novel pathogenic variants, including one mosaic variant (exon 16-22 deletion), three chromosomal abnormalities (46, XN, inv[X][pter→p22.11::q21.31→p22.11::q21.31 →qter], 46, XN, inv[X][p22.11p22.11], and XXY), a nonclassical intron variant (NM_000444.6, c.1701_31A > G), and a deletion variant (NM_000444.6, c.64_5464-186 del5215) of PHEX. Additionally, a genetic testing workflow was proposed to aid in diagnosing patients suspected of XLH. CONCLUSION: Our research expands the mutation spectrum of PHEX and highlights the significance of utilizing multiple genetic testing methods to diagnose XLH.

6.
Clin Spine Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723028

RESUMO

STUDY DESIGN: Intraoperative neurophysiological monitoring (IONM) as a guide to bone layer estimation was examined during posterior cervical spine lamina grinding. OBJECTIVE: To explore the feasibility of IONM to estimate bone layer thickness. SUMMARY OF BACKGROUND DATA: Cervical laminoplasty is a classic operation for cervical spondylosis. To increase safety and accuracy, surgery-assistant robots are currently being studied. It combines the advantages of various program awareness methods to form a feasible security strategy. In the field of spinal surgery, robots have been successfully used to help place pedicle screws. IONM is used to monitor intraoperative nerve conditions in spinal surgery. This study was designed to explore the feasibility of adding IONM to robot safety strategies. METHODS: Chinese miniature pig model was used. Electrodes were placed on the lamina, and the minimum stimulation threshold of DNEP for each lamina was measured (Intact lamina, IL). The laminae were ground to measure the DNEP threshold after incomplete grinding (Inner cortical bone preserved, ICP) and complete grinding (Inner cortical bone grinded, ICG). Subsequently, the lateral cervical mass screw canal drilling was performed, and the t-EMG threshold of the intact and perforated screw canals was measured and compared. RESULT: The threshold was significantly lower than that of the recommended threshold of DENP via percutaneous cervical laminae measurement. The DNEP threshold decreases with the process of laminae grinding. The DNEP threshold of the IL group was significantly higher than ICP and ICG group, while there was no significant difference between the ICP group and the ICG group. There was no significant relationship between the integrity of the cervical spine lateral mass screw path and t-EMG threshold. CONCLUSIONS: It is feasible to use DENP threshold to estimate lamina thickness. Cervical lateral mass screw canals by t-EMG showed no help to evaluate the integrity.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38724321

RESUMO

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38743293

RESUMO

Recombinant human erythropoietin (rhEPO) is a glycoprotein that acts as the main hormone involved in regulating red blood cell production to treat anemia caused by chronic kidney disease or chemotherapy, which has three N-glycosylation sites and one O-glycosylation site. It contains a variety of different glycosylation modifications, such as sialyation, O-acetylation on sialic acids, etc., which causes a big challenge for the glycosylation analysis of rhEPO. In this study, a liquid chromatography-mass spectrometry (LC-MS) method combined with electron-activated dissociation (EAD) technology was used in qualitative and quantitative characterization of rhEPO N-glycosylation and O-glycosylation in just one injection. The usage of EAD not only generated abundant MS/MS fragment ions of glycopeptides and improved the MS/MS sequence coverage but also preserved the glycan structures in the MS/MS fragment ions and the integrity of the glycosidic bond between the glycans and peptides. Three N-glycosylation sites (N24, N38, and N83) and one O-glycosylation site (S126) of rhEPO samples were successfully identified. Among them, the glycosylation ratios of N24, N38, and N83 sites were 82.7%, 100%, and 100% respectively, and 15, 10, and 12 different N-glycans could be identified at the glycopeptide level. The total average number of sialic acids, N-hydroxyacetylneuraminoic acid, and O-acetylation on sialic acid were 7.28, 4.21, and 0.66 at the intact protein level, respectively. For O-glycosylation site S126, O-glycosylation ratios analyzed at the intact protein level and the glycopeptide level were 80.2% and 80.3%, respectively, and two O-glycans were identified, including Core1_S1 and Core1_S2. This study also compared the difference of the glycans and their relative contents in batch-to-batch rhEPO samples. The results proved that the workflow using EAD fragmentation in LC-MS method could be effectively applied for characterizing the glycosylation analysis of rhEPO samples and batch-to-batch consistency analysis, which would help to reasonably guide the optimization of rhEPO production process.

10.
Opt Lett ; 49(10): 2641-2644, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748125

RESUMO

Mid-infrared (MIR) Si-based optoelectronics has wide potential applications, and its design requires simultaneous consideration of device performance optimization and the feasibility of heterogeneous integration. The emerging interest in all-dielectric metasurfaces for optoelectronic applications stems from their exceptional ability to manipulate light. In this Letter, we present our research on an InSb all-dielectric metasurface designed to achieve ultrahigh absorptivity within the 5-5.5 µm wavelength range. By integrating an InSb nanodisk array layer on a Si platform using wafer bonding and heteroepitaxial growth, we demonstrate three kinds of metasurface with high absorptivity of 98.36%, 99.28%, and 99.18%. The enhanced absorption is mainly contributed by the Kerker effect and the anapole state and the peak, with the added flexibility of tuning both the peak and bandwidth of absorption by altering the metasurface parameters. Our findings provide an alternative scheme to develop high-performance detectors and absorbers for MIR silicon photonics.

11.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730808

RESUMO

Aiming to enhance the comprehensive utilization of steel slag (SS), a solid waste-based binder consisting of SS, granulated blast furnace slag (BFS), and desulfurization gypsum (DG) was designed and prepared. This study investigated the reaction kinetics, phase assemblages, and microstructures of the prepared solid waste-based cementitious materials with various contents of SS through hydration heat, XRD, FT-IR, SEM, TG-DSC, and MIP methods. The synergistic reaction mechanism between SS and the other two wastes (BFS and DG) is revealed. The results show that increasing SS content in the solid waste-based binder raises the pH value of the freshly prepared pastes, advances the main hydration reaction, and shortens the setting time. With the optimal SS content of 20%, the best mechanical properties are achieved, with compressive strengths of 19.2 MPa at 3 d and 58.4 MPa at 28 d, respectively. However, as the SS content continues to increase beyond 20%, the hydration process of the prepared binder is delayed. The synergistic activation effects between SS and BFS with DG enable a large amount of ettringite (AFt) formation, guaranteeing early strength development. As the reaction progresses, more reaction products CSH and Aft are precipitated. They are interlacing and overlapping, jointly refining and densifying the material's microstructure and contributing to the long-term strength gain. This study provides a reference for designing and developing solid waste-based binders and deepens the insightful understanding of the hydration mechanism of the solid waste-based binder.

12.
Research (Wash D C) ; 7: 0361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737196

RESUMO

Neural networks excel at capturing local spatial patterns through convolutional modules, but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals. In this work, we propose a novel network named filtering module fully convolutional network (FM-FCN), which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise. First, instead of using a fully connected layer, we use an FCN to preserve the time-dimensional correlation information of physiological signals, enabling multiple cycles of signals in the network and providing a basis for signal processing. Second, we introduce the FM as a network module that adapts to eliminate unwanted interference, leveraging the structure of the filter. This approach builds a bridge between deep learning and signal processing methodologies. Finally, we evaluate the performance of FM-FCN using remote photoplethysmography. Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse (BVP) signal and heart rate (HR) accuracy. It substantially improves the quality of BVP waveform reconstruction, with a decrease of 20.23% in mean absolute error (MAE) and an increase of 79.95% in signal-to-noise ratio (SNR). Regarding HR estimation accuracy, FM-FCN achieves a decrease of 35.85% in MAE, 29.65% in error standard deviation, and 32.88% decrease in 95% limits of agreement width, meeting clinical standards for HR accuracy requirements. The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction. The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN.

13.
J Diabetes Res ; 2024: 1222395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725443

RESUMO

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamação , Inulina , Rim , Metabolômica , Camundongos Endogâmicos ICR , Estresse Oxidativo , Animais , Inulina/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Camundongos , Masculino , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Ácidos Graxos Voláteis/metabolismo , Dieta Hiperlipídica , Nitrogênio da Ureia Sanguínea
14.
Clin J Am Soc Nephrol ; (0)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728096

RESUMO

BACKGROUND: Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. This study aimed at establishing a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. METHODS: In this retrospective cohort study of 2,056 IgA nephropathy patients at 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets while 8797 windows in 18 kidney centers were assigned to an independently test set. Interpretable Multi-Variable Long Short-Term Memory (IMV-LSTM), a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using Kaplan-Meier analysis and the C statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. RESULTS: The model achieved a higher C statistic (0.93; 95% CI, 0.92-0.95) on the test set than the XGBoost prediction model that we developed in a previous study using only baseline information (C statistic, 0.84; 95% CI, 0.80-0.88). Kaplan-Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. CONCLUSIONS: In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcome.

15.
Phys Rev Lett ; 132(17): 176401, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728714

RESUMO

Ab initio calculation of dielectric response with high-accuracy electronic structure methods is a long-standing problem, for which mean-field approaches are widely used and electron correlations are mostly treated via approximated functionals. Here we employ a neural network wave function ansatz combined with quantum Monte Carlo method to incorporate correlations into polarization calculations. On a variety of systems, including isolated atoms, one-dimensional chains, two-dimensional slabs, and three-dimensional cubes, the calculated results outperform conventional density functional theory and are consistent with the most accurate calculations and experimental data. Furthermore, we have studied the out-of-plane dielectric constant of bilayer graphene using our method and reestablished its thickness dependence. Overall, this approach provides a powerful tool to accurately describe electron correlation in the modern theory of polarization.

16.
Ecotoxicol Environ Saf ; 278: 116444, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728943

RESUMO

Silicosis is a disease characterized by lung inflammation and fibrosis caused by long-term inhalation of free silicon dioxide (SiO2). Recent studies have found that a large number of lymphatic hyperplasia occurs during the occurrence and development of silicosis. miRNAs play an important role in lymphangiogenesis. However, the regulation and mechanism of miRNAs on lymphangiogenesis in silicosis remain unclear. In this study, lymphangiogenesis was observed in silicosis rats, and VEGF-C-targeted miRNAs were screened, and the effect of miRNAs on the formation of human lymphatic endothelial cells (HLECs) tubular structure was investigated in vitro. The results showed that SiO2 promoted the expressions of Collagen Ι and α-SMA, TNF-α, IL-6 and VEGF-C increased first and then decreased, and promoted the formation of lymphatic vessels. Bioinformatics methods screened miR-455-3p for targeted binding to VEGF-C, and dual luciferase reporter genes confirmed VEGF-C as the target gene of miR-455-3p, and miR-455-3p was down-regulated in the lung tissue of silicosis rats. Transfection of miR-455-3p Inhibitors down-regulated the expression level of miR-455-3p and up-regulated the expression levels of VEGF-C and VEGFR-3 in HLECs, enhanced migration ability and increased tube formation. Transfection of miR-455-3p Mimics showed an opposite trend. These results suggest that miR-455-3p further regulates the tubular structure formation of HLECs by regulating VEGF-C/VEGFR3. Therefore, targeting miR-455-3p may provide a new therapeutic strategy for SiO2-induced silicosis injury.

17.
Int J Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729123

RESUMO

BACKGROUND: Frailty is recognized as a surrogate for physiological age and has been established as a valid and independent predictor of postoperative morbidity, mortality, and complications. ERAS can enhance surgical safety by minimizing stress responses in frail patients, enabling surgeons to discharge patients earlier. However, the question of whether and to what extent the frailty impacts the post-ERAS outcomes in older patients remains. MATERIALS AND METHODS: An evidence-based ERAS program was implemented in our center from January 2019. This is a prospective cohort study of patients aged ≥75 years who underwent open transforaminal lumbar interbody fusion (TLIF) for degenerative spine disease from April 2019 to October 2021. Frailty was assessed with the Fried frailty scale (FP scale), and patients were categorized as non/prefrail (FP 0-2) or frail (FP ≥ 3). The preoperative variables, operative data, postoperative outcomes and follow-up information were compared between the two groups. Univariate and multivariate logistic regression analyses were used to identify risk factors for 90-day major complications and prolonged length of hospital stay (LOS) after surgery. RESULTS: A total of 245 patients (age of 79.8 ± 3.4 yr) who had a preoperative FP score recorded and underwent scheduled TLIF surgery were included in the final analysis. Comparisons between non-frail and prefrail/frail patients revealed no significant difference in age, sex, and surgery-related variables. Even after adjusting for multiple comparisons, the association between Fried frailty and ADL-dependency, IADL-dependency, and malnutrition remained significant. Preoperative frailty was associated with increased rates of postoperative adverse events. A higher CCI grade was an independent predictor for 90-day major complications, while Fried frailty and MNA-SF scores <12 were predictive of poor postoperative recovery. CONCLUSION: Frail older patients had more adverse post-ERAS outcomes after TLIF compared to non/prefrail older patients. Continued research and multidisciplinary collaboration will be essential to refine and optimize protocols for surgical care in frail older adults.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38730084

RESUMO

PURPOSE: The value of preoperative multidisciplinary approach remains inadequately delineated in forecasting postoperative outcomes of patients undergoing coronary artery bypass grafting (CABG). Herein, we aimed to ascertain the efficacy of multi-modality cardiac imaging in predicting post-CABG cardiovascular outcomes. METHODS: Patients with triple coronary artery disease underwent cardiac sodium [18F]fluoride ([18F]NaF) positron emission tomography/computed tomography (PET/CT), coronary angiography, and CT-based coronary artery calcium scoring before CABG. The maximum coronary [18F]NaF activity (target-to-blood ratio [TBR]max) and the global coronary [18F]NaF activity (TBRglobal) was determined. The primary endpoint was perioperative myocardial infarction (PMI) within 7-day post-CABG. Secondary endpoint included major adverse cardiac and cerebrovascular events (MACCEs) and recurrent angina. RESULTS: This prospective observational study examined 101 patients for a median of 40 months (interquartile range: 19-47 months). Both TBRmax (odds ratio [OR] = 1.445; p = 0.011) and TBRglobal (OR = 1.797; P = 0.018) were significant predictors of PMI. TBRmax>3.0 (area under the curve [AUC], 0.65; sensitivity, 75.0%; specificity, 56.8%; p = 0.036) increased PMI risk by 3.661-fold, independent of external confounders. Kaplan-Meier test revealed a decrease in MACCE survival rate concomitant with an escalating TBRmax. TBRmax>3.6 (AUC, 0.70; sensitivity, 76.9%; specificity, 73.9%; p = 0.017) increased MACCEs risk by 5.520-fold. Both TBRmax (hazard ratio [HR], 1.298; p = 0.004) and TBRglobal (HR = 1.335; p = 0.011) were significantly correlated with recurrent angina. No significant associations were found between CAC and SYNTAX scores and between PMI occurrence and long-term MACCEs. CONCLUSION: Quantification of coronary microcalcification activity via [18F]NaF PET displayed a strong ability to predict early and long-term post-CABG cardiovascular outcomes, thereby outperforming conventional metrics of coronary macrocalcification burden and stenosis severity. TRIAL REGISTRATION: The trial was registered with the Chinese Clinical Trial Committee (number: ChiCTR1900022527; URL: www.chictr.org.cn/showproj.html?proj=37933 ).

19.
World Neurosurg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734168

RESUMO

OBJECTIV: To evaluate the risk factors of new osteoporotic vertebral compression fractures (OVCFs) after percutaneous vertebroplasty (PVP). METHODS: From January 2016 to November 2019, patients suffering from OVCFs were retrospectively reviewed. The independent influence factors for new OVCFs after PVP were assessed, from following variables: age, sex, BMI, BMD, history of alcoholism, smoking, hypertension, diabetes, glucocorticoid use, and prior vertebral fractures, the number of initial fractures, mean cement volume, method of puncture, D-type of cement leakage and regular anti-osteoporosis treatment. RESULTS: A total of 268 patients with 347 levels met the inclusion criteria and were finally included in this study. 49 levels of new OVCFs among 33 patients (12.31%) were observed during the follow-up period. It indicated that female (Adjusted OR: 6.812, 95%CI: [1.096, 42.337], P = 0.040), lower BMD (Adjusted OR: 0.477, 95%CI: [0.300, 0.759], P = 0.002), prior vertebral fractures (Adjusted OR: 16.145, 95%CI: [5.319, 49.005], P = 0.000), and regular anti-osteoporosis treatment (Adjusted OR: 0.258, 95%CI: [0.086, 0.774], P = 0.016) were independent influence factors for new OVCF. The cut-off value of BMD to reach new OVCF was -3.350, with a sensitivity of 0.660 and a specificity of 0.848. CONCLUSION: Female, lower BMD (T- score of lumbar), prior vertebral fractures and regular anti-osteoporosis treatment were independent influencing factors. BMD (T- score of lumbar) lower than -3.350 would increase risk for new OVCF, and none osteoporotic treatment has detrimental effect on new onset fractures following PVP.

20.
Adv Mater ; : e2404901, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723206

RESUMO

Intrinsic characteristics of microorganisms, including non-specific metabolism sites, toxic byproducts, and uncontrolled proliferation constrain their exploitation in medical applications such as tumor therapy. Here, the authors report an engineered biohybrid that can efficiently target cancerous sites through a pre-determined metabolic pathway to enable precise tumor ablation. In this system, DH5α Escherichia coli is engineered by the introduction of hypoxia-inducible promoters and lactate oxidase genes, and further surface-armored with iron-doped ZIF-8 nanoparticles. This bioengineered E. coli can produce and secrete lactate oxidase to reduce lactate concentration in response to hypoxic tumor microenvironment, as well as triggering immune activation. The peroxidase-like functionality of the nanoparticles extends the end product of the lactate metabolism, enabling the conversion of hydrogen peroxide (H2O2) into highly cytotoxic hydroxyl radicals. This, coupled with the transformation of tirapazamine loaded on nanoparticles to toxic benzotriazinyl, culminates in severe tumor cell ferroptosis. Intravenous injection of this biohybrid significantly inhibits tumor growth and metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA