Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125685

RESUMO

Transcription factors (TFs) are crucial pre-transcriptional regulatory mechanisms that can modulate the expression of downstream genes by binding to their promoter regions. DOF (DNA binding with One Finger) proteins are a unique class of TFs with extensive roles in plant growth and development. Our previous research indicated that iron content varies among bamboo leaves of different colors. However, to our knowledge, genes related to iron metabolism pathways in bamboo species have not yet been studied. Therefore, in the current study, we identified iron metabolism related (IMR) genes in bamboo and determined the TFs that significantly influence them. Among these, DOFs were found to have widespread effects and potentially significant impacts on their expression. We identified specific DOF members in Dendrocalamus latiflorus with binding abilities through homology with Arabidopsis DOF proteins, and established connections between some of these members and IMR genes using RNA-seq data. Additionally, molecular docking confirmed the binding interactions between these DlDOFs and the DOF binding sites in the promoter regions of IMR genes. The co-expression relationship between the two gene sets was further validated using q-PCR experiments. This study paves the way for research into iron metabolism pathways in bamboo and lays the foundation for understanding the role of DOF TFs in D. latiflorus.


Assuntos
Regulação da Expressão Gênica de Plantas , Ferro , Folhas de Planta , Proteínas de Plantas , Fatores de Transcrição , Folhas de Planta/metabolismo , Folhas de Planta/genética , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Simulação de Acoplamento Molecular , Poaceae/genética , Poaceae/metabolismo
2.
World J Gastroenterol ; 30(26): 3206-3209, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086639

RESUMO

In this editorial, we review the work of Razali et al published in World J Gastroenterology, with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase (PI3K) pathway and buparlisib on colitis-associated cancer. The role of PI3K in promoting cancer progression has been widely recognized, as it is involved in regulating the survival, differentiation, and proliferation of cancer cells. The complement Clq/TNF-related protein 6 (CTRP6) is a newer tumor-associated factor. Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer, hepatocellular carcinoma, colorectal cancer, and other gastrointestinal tumors through the PI3K pathway. This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.


Assuntos
Fosfatidilinositol 3-Quinase , Transdução de Sinais , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias do Sistema Digestório/patologia , Neoplasias do Sistema Digestório/metabolismo
3.
Adv Sci (Weinh) ; 11(28): e2402287, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711218

RESUMO

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.


Assuntos
Organoides , Transcriptoma , Humanos , Organoides/metabolismo , Organoides/citologia , Organoides/transplante , Transcriptoma/genética , Encéfalo/metabolismo , Análise de Célula Única/métodos , Diferenciação Celular/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/citologia , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA