Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(7): 1089-1100, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37316351

RESUMO

Recent studies exploring the impact of methylation in tumor evolution suggest that although the methylation status of many of the CpG sites are preserved across distinct lineages, others are altered as the cancer progresses. Because changes in methylation status of a CpG site may be retained in mitosis, they could be used to infer the progression history of a tumor via single-cell lineage tree reconstruction. In this work, we introduce the first principled distance-based computational method, Sgootr, for inferring a tumor's single-cell methylation lineage tree and for jointly identifying lineage-informative CpG sites that harbor changes in methylation status that are retained along the lineage. We apply Sgootr on single-cell bisulfite-treated whole-genome sequencing data of multiregionally sampled tumor cells from nine metastatic colorectal cancer patients, as well as multiregionally sampled single-cell reduced-representation bisulfite sequencing data from a glioblastoma patient. We show that the tumor lineages constructed reveal a simple model underlying tumor progression and metastatic seeding. A comparison of Sgootr against alternative approaches shows that Sgootr can construct lineage trees with fewer migration events and with more in concordance with the sequential-progression model of tumor evolution, with a running time a fraction of that used in prior studies. Lineage-informative CpG sites identified by Sgootr are in inter-CpG island (CGI) regions, as opposed to intra-CGIs, which have been the main regions of interest in genomic methylation-related analyses.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Metilação de DNA/genética , Sulfitos , Análise de Sequência de DNA/métodos , Genoma , Neoplasias/genética , Ilhas de CpG/genética
2.
Bioinformatics ; 36(Suppl_2): i866-i874, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33381837

RESUMO

MOTIVATION: Mapping genetic interactions (GIs) can reveal important insights into cellular function and has potential translational applications. There has been great progress in developing high-throughput experimental systems for measuring GIs (e.g. with double knockouts) as well as in defining computational methods for inferring (imputing) unknown interactions. However, existing computational methods for imputation have largely been developed for and applied in baker's yeast, even as experimental systems have begun to allow measurements in other contexts. Importantly, existing methods face a number of limitations in requiring specific side information and with respect to computational cost. Further, few have addressed how GIs can be imputed when data are scarce. RESULTS: In this article, we address these limitations by presenting a new imputation framework, called Extensible Matrix Factorization (EMF). EMF is a framework of composable models that flexibly exploit cross-species information in the form of GI data across multiple species, and arbitrary side information in the form of kernels (e.g. from protein-protein interaction networks). We perform a rigorous set of experiments on these models in matched GI datasets from baker's and fission yeast. These include the first such experiments on genome-scale GI datasets in multiple species in the same study. We find that EMF models that exploit side and cross-species information improve imputation, especially in data-scarce settings. Further, we show that EMF outperforms the state-of-the-art deep learning method, even when using strictly less data, and incurs orders of magnitude less computational cost. AVAILABILITY: Implementations of models and experiments are available at: https://github.com/lrgr/EMF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epistasia Genética
3.
Bioinformatics ; 36(Suppl_1): i169-i176, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657358

RESUMO

MOTIVATION: Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology. RESULTS: We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10-100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor. AVAILABILITY AND IMPLEMENTATION: https://github.com/algo-cancer/PhISCS-BnB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Neoplasias , Humanos , Cadeias de Markov , Neoplasias/genética , Filogenia , Análise de Sequência , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA