Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Genet Med ; 24(5): 986-998, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101336

RESUMO

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Assuntos
Genoma Humano , Neoplasias , Testes Genéticos/métodos , Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Neoplasias/genética , Virulência
3.
Nat Genet ; 52(4): 448-457, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246132

RESUMO

Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface (search.cancervariants.org) for exploring the harmonized interpretations from these six knowledgebases.


Assuntos
Variação Genética/genética , Neoplasias/genética , Bases de Dados Genéticas , Diploide , Genômica/métodos , Humanos , Bases de Conhecimento , Medicina de Precisão/métodos
4.
Stem Cell Reports ; 7(2): 139-48, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27396937

RESUMO

Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease caused by mutations in the gene encoding the WAS protein (WASp). Here, induced pluripotent stem cells (iPSCs) were derived from a WAS patient (WAS-iPSC) and the endogenous chromosomal WAS locus was targeted with a wtWAS-2A-eGFP transgene using zinc finger nucleases (ZFNs) to generate corrected WAS-iPSC (cWAS-iPSC). WASp and GFP were first expressed in the earliest CD34(+)CD43(+)CD45(-) hematopoietic precursor cells and later in all hematopoietic lineages examined. Whereas differentiation to non-lymphoid lineages was readily obtained from WAS-iPSCs, in vitro T lymphopoiesis from WAS-iPSC was deficient with few CD4(+)CD8(+) double-positive and mature CD3(+) T cells obtained. T cell differentiation was restored for cWAS-iPSCs. Similarly, defects in natural killer cell differentiation and function were restored on targeted correction of the WAS locus. These results demonstrate that the defects exhibited by WAS-iPSC-derived lymphoid cells were fully corrected and suggests the potential therapeutic use of gene-corrected WAS-iPSCs.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas/patologia , Linfopoese , Síndrome de Wiskott-Aldrich/patologia , Síndrome de Wiskott-Aldrich/terapia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células Matadoras Naturais/metabolismo , Linfócitos T/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética
5.
Stem Cell Reports ; 4(4): 569-77, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25772471

RESUMO

Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources-potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines. We then utilized zinc-finger nucleases (ZFNs), designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Marcação de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Alelos , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Endonucleases/genética , Endonucleases/metabolismo , Expressão Gênica , Marcação de Genes/métodos , Vetores Genéticos/genética , Genótipo , Recombinação Homóloga , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Reparo de DNA por Recombinação , Análise de Sequência de DNA , Dedos de Zinco/genética
6.
Chem Sci ; 4(8): 3110-3117, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26682036

RESUMO

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement.

7.
J Med Chem ; 55(14): 6639-43, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22724510

RESUMO

The JmjC oxygenases catalyze the N-demethylation of N(ε)-methyl lysine residues in histones and are current therapeutic targets. A set of human 2-oxoglutarate analogues were screened using a unified assay platform for JmjC demethylases and related oxygenases. Results led to the finding that daminozide (N-(dimethylamino)succinamic acid, 160 Da), a plant growth regulator, selectively inhibits the KDM2/7 JmjC subfamily. Kinetic and crystallographic studies reveal that daminozide chelates the active site metal via its hydrazide carbonyl and dimethylamino groups.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Reguladores de Crescimento de Plantas/farmacologia , Succinatos/farmacologia , Humanos , Concentração Inibidora 50 , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
8.
PLoS One ; 5(11): e15535, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21124847

RESUMO

BACKGROUND: Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(ε)-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(ε)-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. PRINCIPAL FINDINGS: High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. CONCLUSIONS: These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.


Assuntos
Histonas/metabolismo , Hidroxiquinolinas/farmacologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Hidroxiquinolinas/química , Histona Desmetilases com o Domínio Jumonji/genética , Espectrometria de Massas , Metilação/efeitos dos fármacos , Estrutura Molecular
9.
Mol Cell Biol ; 30(7): 1673-88, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20086098

RESUMO

The mammalian SWI/SNF chromatin-remodeling complex facilitates DNA access by transcription factors and the transcription machinery. The characteristic member of human SWI/SNF-A is BAF250/ARID1, of which there are two isoforms, BAF250a/ARID1a and BAF250b/ARID1b. Here we report that BAF250b complexes purified from mammalian cells contain elongin C (Elo C), a BC box binding component of an E3 ubiquitin ligase. BAF250b was found to have a BC box motif, associate with Elo C in a BC box-dependent manner, and, together with cullin 2 and Roc1, assemble into an E3 ubiquitin ligase. The BAF250b BC box mutant protein was unstable in vivo and was autoubiquitinated in a manner similar to that for the VHL BC box mutants. The discovery that BAF250 is part of an E3 ubiquitin ligase adds an enzymatic function to the chromatin-remodeling complex SWI/SNF-A. The immunopurified BAF250b E3 ubiquitin ligase was found to target histone H2B at lysine 120 for monoubiquitination in vitro. To date, all H2B monoubiquitination was attributed to the human homolog of yeast Bre1 (RNF20/40). Mutation of Drosophila osa, the homolog of BAF250, or depletion of BAF250 by RNA interference (RNAi) in cultured human cells resulted in global decreases in monoubiquitinated H2B, implicating BAF250 in the cross talk of histone modifications.


Assuntos
Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Elonguina , Histonas/genética , Humanos , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA