Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324019

RESUMO

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

2.
Anal Chem ; 95(45): 16744-16753, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37929302

RESUMO

Tunable detection of microRNA is crucial to meet the desired demand for sample species with varying concentrations in clinical settings. Herein, we present a DNA walker-based molecular circuit for the detection of miRNA-21 (miR-21) with tunable dynamic ranges and sensitivity levels ranging from fM to pM. The phosphate-activated fluorescence of UiO-66-NH2 metal-organic framework nanoparticles was used as label-free fluorescence tags due to their competitive coordination effect with the Zr atom, which significantly inhibited the ligand-to-metal charge transfer. To achieve a tunable detection performance for miR-21, the ultraviolet sensitive o-nitrobenzyl was induced as a photocleavable linker, which was inserted at various sites between the loop and the stem of the hairpin probe to regulate the DNA strand displacement reaction. The dynamic range can be precisely regulated from 700- to 67,000-fold with tunable limits of detection ranging from 2.5 fM to 36.7 pM. Impressively, a Boolean logic tree and complex molecular circuit were constructed for logic computation and cancer diagnosis in clinical blood samples. This intelligent biosensing method presents a powerful solution for converting complex biosensing systems into actionable healthcare decisions and will facilitate early disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Nanopartículas , DNA , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Anal Chem ; 95(36): 13659-13667, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623910

RESUMO

Conventional electrochemical detection of microRNA (miRNA) encounters issues of poor sensitivity and fixed dynamic range. Here, we report a DNA tile and invading stacking primer-assisted CRISPR-Cas12a multiple amplification strategy to construct an entropy-controlled electrochemical biosensor for the detection of miRNA with tunable sensitivity and dynamic range. To amplify the signal, a cascade amplification of the CRISPR-Cas12a system along with invading stacking primer signal amplification (ISPSA) was designed to detect trace amounts of miRNA-31 (miR-31). The target miR-31 could activate ISPSA and produce numerous DNAs, triggering the cleavage of the single-stranded linker probe (LP) that connects a methylene blue-labeled DNA tile with a DNA tetrahedron to form a Y-shaped DNA scaffold on the electrode. Based on the decrease of current, miR-31 can be accurately and efficiently detected. Impressively, by changing the loop length of the LP, it is possible to finely tune the entropic contribution while keeping the enthalpic contribution constant. This strategy has shown a tunable limit of detection for miRNA from 0.31 fM to 0.56 pM, as well as a dynamic range from ∼2200-fold to ∼270,000-fold. Moreover, it demonstrated satisfactory results in identifying cancer cells with a high expression of miR-31. Our strategy broadens the application of conventional electrochemical biosensing and provides a tunable strategy for detecting miRNAs at varying concentrations.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Entropia , Sistemas CRISPR-Cas/genética , DNA/genética , Eletrodos , MicroRNAs/genética
4.
Anal Chem ; 95(29): 11113-11123, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428145

RESUMO

Organophosphate pesticides are used in agriculture due to their high effectiveness and low persistence in eradicating insects and pests. However, conventional detection methods encounter the limitation of undesired detection specificity. Thus, screening phosphonate-type organophosphate pesticides (OOPs) from their analogues, phosphorothioate organophosphate pesticides (SOPs), remains a challenge. Here, we reported a d-penicillamine@Ag/Cu nanocluster (DPA@Ag/Cu NCs)-based fluorescence assay to screen OOPs from 21 kinds of organophosphate pesticides, which can be used for logic sensing and information encryption. Acetylthiocholine chloride was enzymatically split by acetylcholinesterase (AChE) to produce thiocholine, which reduced the fluorescence of DPA@Ag/Cu NCs due to the transmission of electrons from DPA@Ag/Cu NCs donor to the thiol group acceptor. Impressively, OOPs acted as an AChE inhibitor and retained the high fluorescence of DPA@Ag/Cu NCs due to the stronger positive electricity of the phosphorus atom. Conversely, SOPs possessed weak toxicity to AChE, which led to low fluorescence intensity. By setting 21 kinds of organophosphate pesticides as the inputs and the fluorescence of the resulting products as the outputs, DPA@Ag/Cu NCs could serve as a fluorescent nanoneuron to construct Boolean logic tree and complex logic circuit for molecular computing. As a proof of concept, by converting the selective response patterns of DPA@Ag/Cu NCs into binary strings, molecular crypto-steganography for encoding, storing, and concealing information was successfully achieved. This study is expected to advance the progress and practical application of nanoclusters in the area of logic detection and information security while also enhancing the relationship between molecular sensors and the world of information.


Assuntos
Antígenos de Grupos Sanguíneos , Inseticidas , Nanopartículas Metálicas , Organofosfonatos , Praguicidas , Penicilamina , Acetilcolinesterase , Compostos Organofosforados , Corantes , Organofosfatos , Lógica , Cobre , Praguicidas/análise
5.
J Food Sci Technol ; 58(6): 2447-2451, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33967341

RESUMO

Hot-melt extrusion (HME) technology was employed to improve water dispersibility of phytosterol (P) using glycerol (G), lecithin (L), and gum arabic (A) as emulsifiers and stabilizers. The structural properties and water dispersibility of HME products were investigated. In contrast to physical mixtures, better water dispersibility and storage stability were observed for HME products, especially P:L:G:A extrudate. These improvements may be mainly associated with decreased crystallinity of phytosterol due to the occurrence of co-crystallization of phytosterol with glycerol during HME process, as confirmed by DSC and XRD data. In addition, HME-induced lecithin-arabic gum reaction products effectively stabilize phytosterol microparticle in aqueous dispersion by providing a steric hindrance. These results suggest that HME could be an effectively and potentially solvent-free technique to produce water-dispersible phytosterol on a large scale.

6.
Food Funct ; 12(6): 2660-2671, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33650606

RESUMO

The high intake of sodium and low intake of dietary fiber are two major dietary risk factors for preventable deaths worldwide, highlighting the need and implementations for developing health foods with low-salt/high-dietary fibers. Bread as a staple food contributes about 25% to the daily intake of sodium in many countries, and salt reduction in bread still remains a great technical challenge. In this study, we developed a simple method to reformulate the white bread in terms of reducing salt contents via dietary fiber fortification, while maintaining the taste and texture qualities. Low molecular weight water-extractable arabinoxylans (LMW-WEAX) as a soluble dietary fiber was first hydrated in salt water before dough mixing, leading to an inhomogeneous spatial distribution of sodium in bread and accelerating the release of sodium ions from crumbs, allowing 20% salt reduction in bread without impacting the salt perception. Data from the moisture content, crumb structure, water distribution, dough rheology and bread texture properties suggest that the pre-hydrated incorporation of LMW-WEAX mitigates the detrimental effect of dietary fiber on the dough and bread quality. The modulation of Ca2+ on the permeability of Na+ through the mucus layer and implication in salt enhancement of the bread were investigated. Results show that the pre-hydrated incorporation of WEAX containing Na+ and Ca2+ (1.0%) makes it possible to reduce 30% salt content in breads, which have implications in the large-scale production of low-salt/high-dietary fiber bread.


Assuntos
Pão/análise , Cálcio/análise , Fibras na Dieta/análise , Sódio na Dieta/análise , Fenômenos Químicos , Dieta Saudável , Cloreto de Sódio na Dieta/análise
7.
Dis Markers ; 2019: 5974238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31558917

RESUMO

[This corrects the article DOI: 10.1155/2019/4586405.].

9.
Dis Markers ; 2019: 4586405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984306

RESUMO

PURPOSE: To compare the expression level of apelin in muscle-invasive bladder cancer and matched paracarcinoma tissues and investigate the relationship between apelin and clinical prognosis in the patients. METHODS: To assess apelin expression by using immunohistochemical method compared with bladder tumors and matched paracarcinoma tissues. Subsequently, the correlation of apelin expression with the clinicopathological features of bladder cancer patients was analyzed. Kaplan-Meier survival curves method was used to analyze apelin prognostic significance for muscle-invasive bladder cancer patients (including 404 muscle-invasive bladder cancer patients and 28 normal bladder tissues, in TCGA dataset). RESULTS: Apelin protein level was overexpressed in bladder tumor tissues compared with paracarcinoma tissues. Furthermore, high apelin expression was associated with high tumor stage (P < 0.05), distant metastasis (P < 0.05), and vascular invasion (P < 0.05). Kaplan-Meier curve analyses showed that the overexpression of apelin was a potential predictor of overall survival and disease-free survival. CONCLUSION: Apelin was upregulated in bladder tumor tissues compared with matched adjacent noncancer tissues, especially in the high tumor stage, distant metastasis, and vascular invasion. What is more, high expression of apelin in muscle-invasive bladder cancer indicates the poor prognosis. These data suggested that apelin might be a therapeutic potential biomarker in muscle-invasive bladder cancer patients.


Assuntos
Apelina/genética , Biomarcadores Tumorais/genética , Carcinoma/metabolismo , Neoplasias Musculares/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Apelina/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma/genética , Carcinoma/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Musculares/genética , Neoplasias Musculares/secundário , Prognóstico , Regulação para Cima , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
10.
Ren Fail ; 40(1): 331-339, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29633893

RESUMO

We aimed to investigate the effect of As2O3 treatment on Wnt/ß-catenin signaling pathway-related genes and pathways in renal cancer. Illumina-based RNA-seq of 786-O cells with or without As2O3 treatment was performed, and differentially expressed genes (DEGs) were identified using Cuffdiff software. TargetMine was utilized to perform Gene Ontology (GO) pathway and Disease Ontology enrichment analyses. Furthermore, TRANSFAC database and LPIA method were applied to select differentially expressed transcription factors (TFs) and pathways related to Wnt/ß-catenin signaling pathway, respectively. Additionally, transcriptional regulatory and pathway crosstalk networks were constructed. In total, 1684 DEGs and 69 TFs were screened out. The 821 up-regulated DEGs were mainly enriched in 67 pathways, 70 GO terms, and 46 disease pathways, while only 1 pathway and 5 GO terms were enriched for 863 down-regulated DEGs. A total of 18 DEGs (4 up-regulated and 14 down-regulated genes) were involved in the Wnt/ß-catenin signaling pathway. Among the 18 DEGs, 4 ones were TFs. Furthermore, 211 pathways were predicted to be linked to the Wnt/ß-catenin signaling pathway. In conclusion, As2O3 may have a significant effect on the Wnt/ß-catenin signaling pathway for renal cancer treatment. The potential key DEGs are expected to be used as therapeutic targets.


Assuntos
Antineoplásicos/uso terapêutico , Arsenicais/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Óxidos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/farmacologia , Trióxido de Arsênio , Arsenicais/farmacologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Biologia Computacional , Regulação para Baixo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Óxidos/farmacologia , Software , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Via de Sinalização Wnt/genética
11.
Acta Pharmacol Sin ; 38(3): 402-414, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112176

RESUMO

BX-795 is an inhibitor of 3-phosphoinositide-dependent kinase 1 (PDK1), but also a potent inhibitor of the IKK-related kinase, TANKbinding kinase 1 (TBK1) and IKKɛ. In this study we attempted to elucidate the molecular mechanism(s) underlying the inhibition of BX-795 on Herpes simplex virus (HSV) replication. HEC-1-A or Vero cells were treated with BX-795 and infected with HSV-1 or HSV-2 for different periods. BX-795 (3.125-25 µmol/L) dose-dependently suppressed HSV-2 replication, and displayed a low cytotoxicity to the host cells. BX-795 treatment dose-dependently suppressed the expression of two HSV immediate-early (IE) genes (ICP0 and ICP27) and the late gene (gD) at 12 h postinfection. HSV-2 infection resulted in the activation of PI3K and Akt in the host cells, and BX-795 treatment inhibited HSV-2-induced Akt phosphorylation and activation. However, the blockage of PI3K/Akt/mTOR with LY294002 and rapamycin did not affect HSV-2 replication. HSV-2 infection increased the phosphorylation of JNK and p38, and reduced ERK phosphorylation at 8 h postinfection in the host cells; BX-795 treatment inhibited HSV-2-induced activation of JNK and p38 MAP kinase as well as the phosphorylation of c-Jun and ATF-2, the downstream targets of JNK and p38 MAP kinase. Furthermore, SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) dose-dependently inhibited the viral replication in the host cells, whereas PD98059 (an ERK inhibitor) was not effective. Moreover, BX-795 blocked PMA-stimulated c-Jun activation as well as HSV-2-mediated c-Jun nuclear translocation. BX-795 dose-dependently inhibited HSV-2, PMA, TNF-α-stimulated AP-1 activation, but not HSV-induced NF-κB activation. Overexpression of p38/JNK attenuated the inhibitory effect of BX-795 on HSV replication. BX-795 completely blocked HSV-2-induced MKK4 phosphorylation, suggesting that BX-795 acting upstream of JNK and p38 MAP kinase. In conclusion, this study identifies the anti-HSV activity of BX-795 and its targeting of the JNK/p38 MAP kinase pathways in host cells.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Pirimidinas/farmacologia , Tiofenos/farmacologia , Replicação Viral/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
12.
Asian Pac J Cancer Prev ; 13(7): 3223-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22994738

RESUMO

HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Ciclo Celular/genética , Proteínas HMGN/deficiência , Proteínas HMGN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transativadores/deficiência , Transativadores/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Proteínas HMGN/biossíntese , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Transativadores/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA