Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554911

RESUMO

To address the shortcoming of Polyvinyl alcohol (PVA) fibers for food or medical packaging materials including low mechanical strength and poor water resistance, lignin (LN) was used as raw material, acetone/H2O as solvent to self-assemble into lignin nanoparticles (LNP) by adverse solvent precipitation approach, and then PVA/LNP composite fibers with different LNP contents were fabricated successfully by wet and dry spinning. Herein, vast hydrophilic hydroxyl groups in PVA decreased owing to the hydrogen bond between LN and PVA, Especially, with only 0.5 wt% loading of LNP into the PVA/LNP fibers, the diameter was 94.4 dtex, tensile strength was 10.1 cN/dtex (1279.8 MPa), initial modulus was 94.7 cN/dtex (12.0 GPa), the crystallinity was 56.7 %, the orientation was 97.1 %, and water contact angle was 103.1°. Compared with pure PVA fibers, the tensile strength of PVA/LNP-0.5 fibers was increased by 44.2 % and the contact angle was increased 37°. This work provides novel insights into obtaining lignin-reinforced PVA composite fibers with strong mechanical properties and excellent water resistance properties, indicating the potential of the PVA/LNP fibers for food or medical packaging application.


Assuntos
Lignina , Álcool de Polivinil , Resistência à Tração , Água , Álcool de Polivinil/química , Lignina/química , Água/química , Fenômenos Mecânicos
2.
In Vitro Model ; 1(3): 241-247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37519331

RESUMO

SARS-CoV-2 is a pandemic coronavirus that causes severe respiratory disease (COVID-19) in humans and is responsible for millions of deaths around the world since early 2020. The virus affects the human respiratory cells through its spike (S) proteins located at the outer shell. To monitor the rapid spreading of SARS-CoV-2 and to reduce the deaths from the COVID-19, early detection of SARS-CoV-2 is of utmost necessity. This report describes a flexible colorimetric biosensor capable of detecting the S protein of SARS-CoV-2. The colorimetric biosensor is made of polyurethane (PU)-polydiacetylene (PDA) nanofiber composite that was chemically functionalized to create a binding site for the receptor molecule-nucleocapsid antibody (anti-N) protein of SARS-CoV-2. After the anti-N protein conjugation to the functionalized PDA fibers, the PU-PDA-NHS-anti fiber was able to detect the S protein of SARS-CoV-2 at room temperature via a colorimetric transition from blue to red. The PU-PDA nanofiber-based biosensors are flexible and lightweight and do not require a power supply such as a battery when the colorimetric detection to S protein occurs, suggesting a sensing platform of wearable devices and personal protective equipment such as face masks and medical gowns for real-time monitoring of virus contraction and contamination. The wearable biosensors could significantly power mass surveillance technologies to fight against the COVID-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s44164-022-00022-z.

3.
Bioengineering (Basel) ; 7(4)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022929

RESUMO

Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.

4.
Nanotechnology ; 29(43): 435704, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30102242

RESUMO

In recent years, Janus materials have become a research hotspot in the field of materials science; however, fabricating inorganic Janus-like nanofibers (NFs) is still a challenge. Herein, we report novel ZnO/NiO Janus-like NFs with efficient photocatalytic performance via an electrospinning method followed by calcination treatment. The morphology, structure, chemical composition and crystallinity of ZnO/NiO Janus-like NFs were studied in detail via SEM, TEM, HRTEM, EDS, FT-IR, XPS and XRD, indicating that the NFs had a perfect Janus-like structure composed of ZnO and NiO. A series of photocatalytic experiments were carried out in aqueous organic dye solutions under 365 nm UV radiation for 1 h, with the degradation rate of malachite green able to reach 96%, proving that the NFs have great potential in the field of organic dye degradation. Furthermore, a reasonable catalytic mechanism for the ZnO/NiO Janus-like NFs was proposed, which was discussed from the view of electron-hole pairs and p-n junctions. In short, the method in our work is expected to become a new way of effectively preparing functional inorganic Janus-like NFs.

5.
Nanoscale ; 10(29): 14060-14066, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29999058

RESUMO

Although Janus films of different compositions have been commonly utilized to develop moisture actuators due to the different capabilities of swelling in materials, a sole material with a distinct structural design is also able to provide moisture-actuation. In this study, we simply used graphene oxide (GO) to fabricate a sole GO film with an asymmetric structure which consisted of a wavy layer and a smooth layer. Due to the asymmetric structure and excellent hygroscopicity of the GO material, the asymmetric graphene oxide (AGO) film (2.5 × 0.5 cm2) was responsive to moisture and showed a maximum bending angle change of ≈1800° as the relative humidity (RH) changed. Compared with other reports about moisture actuators, the AGO film exhibited a superior bending capability. Furthermore, we propose a novel mechanism for moisture actuation of the AGO film based on our detailed observations, and a wavy structure has been introduced for showing great potential in bending deformation. Finally, the AGO film was used as a grabber to grab a leaf and it exhibited good capability to twine around a plastic rod. This work provides a novel pathway for the development of moisture-responsive materials for potential applications in robotics, artificial muscles and switches.

6.
ACS Omega ; 2(10): 7334-7342, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023547

RESUMO

Polydiacetylenes (PDAs) are conjugative polymers that demonstrate color changes as a response to an external stimulus. In this study, 10,12-pentacosadiynoic acid (PCDA) was mixed with a supporting polymer including poly(ethylene oxide) (PEO) and polyurethane (PU), and the mixture solution was electrospun to construct fiber composites. The electrospun fibers were then photopolymerized using UV irradiation to produce PEO-PDA and PU-PDA nanofiber mats with a fiber diameter ranging from 130 nm to 2.5 µm. The morphologies of both PEO-PDA and PU-PDA nanofibers were dependent on electrospinning parameters such as the ratio of PCDA to PEO or PCDA to PU and the total polymer concentrations. Scanning electron microscopy images showed beaded fibers of PEO-PDA and PU-PDA at 2 and 18 w/v % concentrations, respectively. Smooth fibers were found when the solvent concentration was increased to 3.75 w/v % in PEO-PDA and 25 w/v % in PU-PDA fibers. Both PEO-PDA and PU-PDA nanofiber composites demonstrated excellent colorimetric responses to the presence of Escherichia coli ATCC25922 bacterial cells and the changes in pH as external stimuli. The nanofibers underwent a rapid colorimetric response when exposed directly to E. coli ATCC25922 grown on Luria-Bertani agar. The comparison between the PEO-PDA and PU-PDA suggested that the combination of PEO and PDA is favorable because it provides a sensitive response to the presence of E. coli. The results were compared with samples of a PDA polymer in the absence of a matrix polymer. The colorimetric response was similar when the PDA polymer and the PDA nanofiber composites were exposed to pH changes, and the color change was found to occur at pH 10 and enhanced at pH 11-13. The PDA-containing nanofiber composites showed stronger colorimetric responses than those of the PDA polymer only, suggesting their potential as biosensors and chemosensors.

7.
Materials (Basel) ; 9(3)2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28773326

RESUMO

Polydiacetylene (PDA) is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA) and poly (ethylene oxide) (PEO) were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

8.
J Colloid Interface Sci ; 436: 1-8, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25259754

RESUMO

Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA