RESUMO
Majorana zero modes (MZMs) are emergent zero-energy topological quasiparticles that are their own antiparticles1,2. Detected MZMs are spatially separated and electrically neutral, so producing hybridization between MZMs is extremely challenging in superconductors3,4. Here, we report the magnetic field response of vortex bound states in superconducting topological crystalline insulator SnTe (001) films. Several MZMs were predicted to coexist in a single vortex due to magnetic mirror symmetry. Using a scanning tunnelling microscope equipped with a three-axis vector magnet, we found that the zero-bias peak (ZBP) in a single vortex exhibits an apparent anisotropic response even though the magnetic field is weak. The ZBP can robustly extend a long distance of up to approximately 100 nm at the (001) surface when the magnetic field is parallel to the ( 1 1 ¯ 0 )-type mirror plane, otherwise it displays an asymmetric splitting. Our systematic simulations demonstrate that the anisotropic response cannot be reproduced with trivial ZBPs. Although the different MZMs cannot be directly distinguished due to the limited energy resolution in our experiments, our comparisons between experimental measurements and theoretical simulations strongly support the existence and hybridization of symmetry-protected multiple MZMs. Our work demonstrates a way to hybridize different MZMs by controlling the orientation of the magnetic field and expands the types of MZM available for tuning topological states.
RESUMO
Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.
RESUMO
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Assuntos
Heterocromatina , Células-Tronco Pluripotentes , Animais , Camundongos , Heterocromatina/genética , Heterocromatina/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Epigênese GenéticaRESUMO
The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.
RESUMO
Unlike classic spins, quantum magnets are spin systems that interact via the exchange interaction and exhibit collective quantum behaviours, such as fractional excitations. Molecular magnetism often stems from d/f-transition metals, but their spin-orbit coupling and crystal field induce a significant magnetic anisotropy, breaking the rotation symmetry of quantum spins. Thus, it is of great importance to build quantum nanomagnets in metal-free systems. Here we have synthesized individual quantum nanomagnets based on metal-free multi-porphyrin systems. Covalent chains of two to five porphyrins were first prepared on Au(111) under ultrahigh vacuum, and hydrogen atoms were then removed from selected carbons using the tip of a scanning tunnelling microscope. The conversion of specific porphyrin units to their radical or biradical state enabled the tuning of intra- and inter-porphyrin magnetic coupling. Characterization of the collective magnetic properties of the resulting chains showed that the constructed S = 1/2 antiferromagnets display a gapped excitation, whereas the S = 1 antiferromagnets exhibit distinct end states between even- and odd-numbered spin chains, consistent with Heisenberg model calculations.
RESUMO
The metal-intercalated bilayer graphene has a flat band with a high density of states near the Fermi energy and thus is anticipated to exhibit an enhanced strong correlation effect and associated fascinating phenomena, including superconductivity. By using a self-developed multifunctional scanning tunneling microscope, we succeeded in observing the superconducting energy gap and diamagnetic response of a Ca-intercalated bilayer graphene below a critical temperature of 8.83 K. The revealed high value of gap ratio, 2Δ/kBTc ≈ 5.0, indicates a strong coupling superconductivity, while the variation of penetration depth with temperature and magnetic field indicates an isotropic s-wave superconductor. These results provide crucial experimental clues for understanding the origin and mechanism of superconductivity in carrier-doped graphene.
RESUMO
In this study, reduced graphene oxide (rGO) was used to fabricate a Z-scheme BiVO4-(rGO-Cu2O) photocatalyst for the degradation of Tetrabromobisphenol A (TBBPA) under sunlight irradiation. The photocatalyst was synthesized using a three-step method BiVO4-(rGO-Cu2O) photocatalyst with an rGO loading of 1% and (rGO-Cu2O) to BiVO4 ratio of 50% achieved the best degradation effect for TBBPA removal. Electron paramagnetic resonance spectroscopy (EPR) confirmed that the charge transfer path of BiVO4-(rGO-Cu2O) follows that of Z-scheme photocatalysts. Moreover, the addition of rGO increases the charge transfer efficiency. High performance liquid chromatography-mass spectrometry (HPLC-MS) was used to detect and analyze intermediate products, allowing the proposal of the main degradation pathway of TBBPA. Photogenerated electrons of BiVO4-(rGO-Cu2O) were then transferred into the conduction band of Cu2O. Cu2O is located in the surface layer, which has the most effective contact area with pollutants, and therefore has a good outcome for the photocatalytic reduction of TBBPA. Photogenerated electrons (e-) and hydroxyl radicals (âOH) are the main factors affecting TBBPA degradation. The degradation process of TBBPA includes electron reduction debromination, hydroxylation, and ß-cleavage. In our work, BiVO4-(rGO-Cu2O) was successfully synthesized to degrade TBBPA; this study brings forth a novel approach for the degradation of halogenated organic pollutants using a Z-scheme photocatalytic composite.
Assuntos
Poluentes Ambientais , Luz Solar , Catálise , Grafite , Bifenil PolibromatosRESUMO
Breaking time reversal symmetry in a topological insulator may lead to quantum anomalous Hall effect and axion insulator phase. MnBi4Te7 is a recently discovered antiferromagnetic topological insulator with TN â¼ 12.5 K, which is composed of an alternatively stacked magnetic layer (MnBi2Te4) and nonmagnetic layer (Bi2Te3). By means of scanning tunneling spectroscopy, we clearly observe the electronic state present at a step edge of a magnetic MnBi2Te4 layer but absent at nonmagnetic Bi2Te3 layers at 4.5 K. Furthermore, we find that as the temperature rises above TN the edge state vanishes, while the point defect induced state persists upon an increase in temperature. These results confirm the observation of magnetism-induced edge states. Our analysis based on an axion insulator theory reveals that the nontrivial topological nature of the observed edge state.
RESUMO
High-quality stanene films have been actively pursued for realizing not only quantum spin Hall edge states without backscattering, but also intrinsic superconductivity, two central ingredients that may further endow the systems to host topological superconductivity. Yet to date, convincing evidence of topological edge states in stanene remains to be seen, let alone the coexistence of these two ingredients, owing to the bottleneck of growing high-quality stanene films. Here we fabricate one- to five-layer stanene films on the Bi(111) substrate and observe the robust edge states using scanning tunneling microscopy/spectroscopy. We also measure distinct superconducting gaps on different-layered stanene films. Our first-principles calculations further show that hydrogen passivation plays a decisive role as a surfactant in improving the quality of the stanene films, while the Bi substrate endows the films with nontrivial topology. The coexistence of nontrivial topology and intrinsic superconductivity renders the system a promising candidate to become the simplest topological superconductor based on a single-element system.
RESUMO
CTCF mediates chromatin insulation and long-distance enhancer-promoter (EP) interactions; however, little is known about how these regulatory functions are partitioned among target genes in key biological processes. Here, we show that Ctcf expression is progressively increased during induced pluripotency. In this process, CTCF first functions as a chromatin insulator responsible for direct silencing of the somatic gene expression program and, interestingly, elevated Ctcf expression next ensures chromatin accessibility and contributes to increased EP interactions for a fraction of pluripotency-associated genes. Therefore, CTCF functions in a context-specific manner to modulate the 3D genome to enable cellular reprogramming. We further discover that these context-specific CTCF functions also enlist SMARCA5, an imitation switch (ISWI) chromatin remodeler, together rewiring the epigenome to facilitate cell-fate switch. These findings reveal the dual functions of CTCF in conjunction with a key chromatin remodeler to drive reprogramming toward pluripotency.
Assuntos
Fator de Ligação a CCCTC , Reprogramação Celular , Cromatina , Elementos Facilitadores Genéticos , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Reprogramação Celular/genética , Elementos Facilitadores Genéticos/genética , Humanos , Camundongos , Regiões Promotoras GenéticasRESUMO
Although extended pluripotent stem cells (EPSCs) have the potential to form both embryonic and extraembryonic lineages, how their transcriptional regulatory mechanism differs from that of embryonic stem cells (ESCs) remains unclear. Here, we discovered that YY1 binds to specific open chromatin regions in EPSCs. Yy1 depletion in EPSCs leads to a gene expression pattern more similar to that of ESCs than control EPSCs. Moreover, Yy1 depletion triggers a series of epigenetic crosstalk activities, including changes in DNA methylation, histone modifications and high-order chromatin structures. Yy1 depletion in EPSCs disrupts the enhancer-promoter (EP) interactions of EPSC-specific genes, including Dnmt3l. Yy1 loss results in DNA hypomethylation and dramatically reduces the enrichment of H3K4me3 and H3K27ac on the promoters of EPSC-specific genes by upregulating the expression of Kdm5c and Hdac6 through facilitating the formation of CCCTC-binding factor (CTCF)-mediated EP interactions surrounding their loci. Furthermore, single-cell RNA sequencing (scRNA-seq) experiments revealed that YY1 is required for the derivation of extraembryonic endoderm (XEN)-like cells from EPSCs in vitro. Together, this study reveals that YY1 functions as a key regulator of multidimensional epigenetic crosstalk associated with extended pluripotency.
Assuntos
Blastocisto , Epigênese Genética , Fator de Transcrição YY1 , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição YY1/metabolismo , Camundongos , Animais , Blastocisto/citologia , Blastocisto/metabolismoRESUMO
A sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles through the Doppler shift of quasiparticle energy caused by finite Cooper pair momentum. In this gapless superconducting state, zero-energy quasiparticles reside on a segment of the normal-state Fermi surface, whereas the remaining Fermi surface is still gapped. We use quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films under proximity effect from the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induces a screening supercurrent, which leads to finite-momentum pairing on the topological surface states of Bi2Te3. We identify distinct interference patterns that indicate a gapless superconducting state with a segmented Fermi surface. Our results reveal the strong impact of finite Cooper pair momentum on the quasiparticle spectrum.
RESUMO
Deposition of Bi on InSb(111)B reveals a striking Sierpinski-triangle (ST)-like structure in Bi thin films. Such a fractal geometric topology is further shown to turn off the intrinsic electronic topology in a thin film. Relaxation of a huge misfit strain of about 30% to 40% between Bi adlayer and substrate is revealed to drive the ST-like island formation. A Frenkel-Kontrova model is developed to illustrate the enhanced strain relief in the ST islands offsetting the additional step energy cost. Besides a sufficiently large tensile strain, forming ST-like structures also requires larger adlayer-substrate and intra-adlayer elastic stiffnesses, and weaker intra-adlayer interatomic interactions.
RESUMO
Magnetic topological insulators, such as MnBi2Te4have attracted great attention recently due to their application to the quantum anomalous Hall (QAH) effect. However, the magnetic quantum spin Hall (QSH) effect in two-dimensional (2D) materials has not yet been reported. Here based on first-principle calculations we find that Ti2Te2O, a van der Waals layered compound, can cherish both the QAH and QSH states, depending on the magnetic order in its single layer. If the single layer was in a chessboard antiferromagnetic (FM) state, it is a QSH insulator which carries two counterpropagating helical edge states. The spin-orbit-couplings induced bulk band gap can approach as large as 0.31 eV. On the other hand, if the monolayer becomes FM, exchange interactions would push one pair of bands away from the Fermi energy and leave only one chiral edge state remaining, which turns the compound into a Chern insulator (precisely, it is semimetallic with a topologically direct band gap). Both magnetic orders explicitly break the time reversal symmetry and split the energy bands of different spin orientations. To our knowledge, Ti2Te2O is the first compound that predicted to possess both intrinsic QSH and QAH effects. Our works provide new possibilities to reach a controllable phase transition between two topological nontrivial phases through magnetism tailoring.
RESUMO
The magnetic properties of carbon materials are at present the focus of intense research effort in physics, chemistry and materials science due to their potential applications in spintronics and quantum computing. Although the presence of spins in open-shell nanographenes has recently been confirmed, the ability to control magnetic coupling sign has remained elusive but highly desirable. Here, we demonstrate an effective approach of engineering magnetic ground states in atomically precise open-shell bipartite/nonbipartite nanographenes using combined scanning probe techniques and mean-field Hubbard model calculations. The magnetic coupling sign between two spins was controlled via breaking bipartite lattice symmetry of nanographenes. In addition, the exchange-interaction strength between two spins has been widely tuned by finely tailoring their spin density overlap, realizing a large exchange-interaction strength of 42 meV. Our demonstrated method provides ample opportunities for designer above-room-temperature magnetic phases and functionalities in graphene nanomaterials.
RESUMO
Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of â¼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.
RESUMO
The porphyrin macrocycle can stabilize a set of magnetic metal ions, thus introducing localized net spins near the center. However, it remains elusive but most desirable to introduce delocalized spins in porphyrins with wide implications, for example, for building correlated quantum spins. Here, we demonstrate that metal-free porphyrins host delocalized π-electron magnetism, as revealed by scanning probe microscopy and a different level of theory calculations. Our results demonstrate that engineering of π-electron topologies introduces a spin-polarized singlet state and delocalized net spins in metal-free porphyrins. In addition, the π-electron magnetism can be switched on/off via scanning tunneling microscope manipulation by tuning the interfacial charge transfer. Our results provide an effective way to precisely control the π-electron magnetism in metal-free porphyrins, which can be further extended to design new magnetic functionalities of porphyrin-based architectures.
RESUMO
A quantum spin hall insulator is manifested by its conducting edge channels that originate from the nontrivial topology of the insulating bulk states. Monolayer 1T^{'}-WTe_{2} exhibits this quantized edge conductance in transport measurements, but because of its semimetallic nature, the coherence length is restricted to around 100 nm. To overcome this restriction, we propose a strain engineering technique to tune the electronic structure, where either a compressive strain along the a axis or a tensile strain along the b axis can drive 1T^{'}-WTe_{2} into an full gap insulating phase. A combined study of molecular beam epitaxy and in situ scanning tunneling microscopy or spectroscopy then confirmed such a phase transition. Meanwhile, the topological edge states were found to be very robust in the presence of strain.
RESUMO
R-loops modulate genome stability and regulate gene expression, but the functions and the regulatory mechanisms of R-loops in stem cell biology are still unclear. Here, we profiled R-loops during somatic cell reprogramming and found that dynamic changes in R-loops are essential for reprogramming and occurred before changes in gene expression. Disrupting the homeostasis of R-loops by depleting RNaseH1 or catalytic inactivation of RNaseH1 at D209 (RNaseH1D209N) blocks reprogramming. Sox2, but not any other factor in the Yamanaka cocktail, overcomes the inhibitory effects of RNaseH1 activity loss on reprogramming. Sox2 interacts with the reprogramming barrier factor Ddx5 and inhibits the resolvase activity of Ddx5 on R-loops and thus facilitates reprogramming. Furthermore, reprogramming efficiency can be modulated by dCas9-mediated RNaseH1/RNaseH1D209N targeting the specific R-loop regions. Together, these results show that R-loops play important roles in reprogramming and shed light on the regulatory module of Sox2/Ddx5 on R-loops during reprogramming.
RESUMO
The quinoid structure, a resonance structure of benzenoid, gives rise to peculiar chemical reactivity and physical properties. A complete characterization of its geometric and electronic properties on the atomic scale is of vital importance to understand and engineer the chemical and physical properties of quinoid molecules. Here, we report a real-space structural and electronic characterization of quinoid poly(para-phenylene) (PPP) chains by using noncontact atomic force microscopy and scanning tunneling microscopy. Our results reveal that quinoid PPP chains adopt a coplanar adsorption configuration on Cu(111) and host in-gap states near Fermi level. In addition, intra- and interchain hopping of quinoid structure are observed, indicative of a quasiparticle behavior originating from charge-lattice interactions. The experimental results are nicely reproduced by tight-binding calculations. Our study provides a comprehensive understanding of the structural and electronic properties of quinoid PPP chains in real space and may be further extended to address the dynamics of nonlinear excitations in quinoid molecules.