Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
Sci Adv ; 10(23): eadk9996, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838152

RESUMO

Immunotoxicity remains a major hindrance to chemotherapy in cancer therapy. Nanocarriers may alleviate the immunotoxicity, but the optimal design remains unclear. Here, we created two variants of maytansine (DM1)-loaded synthetic high-density lipoproteins (D-sHDL) with either physically entrapped (ED-sHDL) or chemically conjugated (CD-sHDL) DM1. We found that CD-sHDL showed less accumulation in the tumor draining lymph nodes (DLNs) and femur, resulting in a lower toxicity against myeloid cells than ED-sHDL via avoiding scavenger receptor class B type 1 (SR-B1)-mediated DM1 transportation into the granulocyte-monocyte progenitors and dendritic cells. Therefore, higher densities of lymphocytes in the tumors, DLNs, and blood were recorded in mice receiving CD-sHDL, leading to a better efficacy and immune memory of CD-sHDL against colon cancer. Furthermore, liposomes with conjugated DM1 (CD-Lipo) showed lower immunotoxicity than those with entrapped drug (ED-Lipo) through the same mechanism after apolipoprotein opsonization. Our findings highlight the critical role of drug loading patterns in dictating the biological fate and activity of nanomedicine.


Assuntos
Nanopartículas , Animais , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Humanos , Receptores Depuradores Classe B/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Lipoproteínas HDL/metabolismo , Portadores de Fármacos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Lipossomos/química , Lipídeos/química
2.
Front Plant Sci ; 15: 1393138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887461

RESUMO

Tea bud detection is the first step in the precise picking of famous teas. Accurate and fast tea bud detection is crucial for achieving intelligent tea bud picking. However, existing detection methods still exhibit limitations in both detection accuracy and speed due to the intricate background of tea buds and their small size. This study uses YOLOv5 as the initial network and utilizes attention mechanism to obtain more detailed information about tea buds, reducing false detections and missed detections caused by different sizes of tea buds; The addition of Spatial Pyramid Pooling Fast (SPPF) in front of the head to better utilize the attention module's ability to fuse information; Introducing the lightweight convolutional method Group Shuffle Convolution (GSConv) to ensure model efficiency without compromising accuracy; The Mean-Positional-Distance Intersection over Union (MPDIoU) can effectively accelerate model convergence and reduce the training time of the model. The experimental results demonstrate that our proposed method achieves precision (P), recall rate (R) and mean average precision (mAP) of 93.38%, 89.68%, and 95.73%, respectively. Compared with the baseline network, our proposed model's P, R, and mAP have been improved by 3.26%, 11.43%, and 7.68%, respectively. Meanwhile, comparative analyses with other deep learning methods using the same dataset underscore the efficacy of our approach in terms of P, R, mAP, and model size. This method can accurately detect the tea bud area and provide theoretical research and technical support for subsequent tea picking.

3.
Open Med (Wars) ; 19(1): 20240983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911257

RESUMO

The bleeding time and amount in the short-segment group were shorter than in the long-segment group, and the bleeding volume was less than in the long-segment group. The Japanese Orthopaedic Association low back pain score, Oswestry Dysfunction Index, and lumbar spine stiffness disability index score of the two groups were significantly improved preoperatively, postoperatively, and at 6 months, 1 year, and 2 years post-operation. The differences were statistically significant at different time points within the groups. Neurological function improved to varying degrees postoperatively. The Cobb angle was significantly higher in both groups (P < 0.05). Adjacent vertebral disease occurred in 10 of 64 patients with short-segment fixation, with a prevalence of 15.6%. Preoperative pelvic tilt angle, preoperative pelvic projection angle (PPA), preoperative degree of matching of PPA to LL (PI-LL), and preoperative coronal Cobb angle were higher in patients with adjacent vertebral disease. There were varying degrees of improvement in low back pain and spinal function after short-segment decompression and fusion internal fixation. However, the patients are generally elderly and at risk of persistent low back pain and accelerated degeneration of adjacent segments.

4.
Ecotoxicol Environ Saf ; 281: 116608, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901170

RESUMO

Water pollution caused by heavy metals is a major environmental problem, threatening water production, food safety, and human health. Cadmium (Cd) pollution is particularly serious because of food-chain biomagnification at toxic concentrations. Modified biochar is promising for heavy metal removal; however, efficient adsorbents for Cd removal are lacking. In the present study, a novel adsorbent, silica gel-modified biochar (SGB), was prepared and applied to treat sewage polluted by Cd. Through the batch adsorption experiments, it is known that SGB possessed outstanding Cd removal ability and recycleability. Furthermore, the adsorption behavior and mechanisms were analyzed by the application of kinetic and isotherm models. The maximum Cd2+ adsorption capacity of SGB was 38.08 mg g-1, and after five recycling processes, the Cd2+ removal rate was still 86.89 %. When the pH of the solution was 7.0, SGB showed the strongest Cd2+ adsorption capacity (29.06 mg g-1). When competitive ions existed, biochar also had high Cd removal efficiency, although the effect of Pb2+ was greater than those of Cu2+ and Zn2+, indicating that SGB was applicable to complex polluted water. Additionally, the main Cd2+ adsorption mechanisms by SGB were electrostatic interactions, π-π interactions, complexation, and co-precipitation. These results showed that SGB can effectively treat Cd-contaminated wastewater as a new adsorbent.

5.
J Agric Food Chem ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889306

RESUMO

The effects of lycopene (LP) on macrophage immune responses were evaluated in this study. Compared with the control treatment, LP treatment significantly increased cell vitality, phagocytic activity, and chemokine production in RAW264.7 cells. Additionally, compared with the control treatment, 4 µM LP treatment significantly activated autophagy, enhanced mitochondrial membrane potential, and upregulated receptor-interacting protein kinase 1 (RIPK1), while necrostatin-1 significantly reversed these effects of LP. Furthermore, compared with that in the control group, RIPK1 was significantly upregulated in the 4 µM LP and 4 µM LP + spautin-1 groups, whereas p-mTOR levels were reduced. More importantly, compared with that in the control group, p62 was significantly downregulated, and Beclin1, LC3-II, and Atg7 were upregulated in the 4 µM LP group, while spautin-1 significantly reversed these effects of LP. These results confirm that LP activates the mTOR/Beclin1/LC3/p62 autophagy signaling pathway through RIPK1, thereby enhancing the immune response of macrophages.

7.
Adv Mater ; : e2405060, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760947

RESUMO

Integration of photocatalytic hydrogen (H2) evolution with oxidative organic synthesis presents a highly attractive strategy for the simultaneous production of clean H2 fuel and high-value chemicals. However, the sluggish dynamics of photogenerated charge carriers across the photocatalysts result in low photoconversion efficiency, hindering the wide applications of such a technology. Herein, this work overcomes this limitation by inducing the full-space electric field via charge polarization engineering on a Mo cluster-decorated Zn2In2S5 (Mo-Zn2In2S5) photocatalyst. Specifically, this full-space electric field arises from a cascade of the bulk electric field (BEF) and local surface electric field (LSEF), triggering the oriented migration of photogenerated electrons from [Zn-S] regions to [In-S] regions and eventually to Mo cluster sites, ensuring efficient separation of bulk and surface charge carriers. Moreover, the surface Mo clusters induce a tip enhancement effect to optimize charge transfer behavior by augmenting electrons and proton concentration around the active sites on the basal plane of Zn2In2S5. Notably, the optimized Mo1.5-Zn2In2S5 catalyst achieves exceptional H2 and benzaldehyde production rates of 34.35 and 45.31 mmol gcat -1 h-1, respectively, outperforming pristine ZnIn2S4 by 3.83- and 4.15-fold. These findings mark a significant stride in steering charge flow for enhanced photocatalytic performance.

8.
ACS Appl Mater Interfaces ; 16(21): 27560-27565, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757777

RESUMO

A direct soft imprint lithography was proposed to realize the direct fabrication of residue-free, well-shaped functional patterns through a single step. This imprint method requires only a simply prepared isopropanol-treated polydimethylsiloxane (PDMS) stamp without any additional resists. Residue-free Ag patterns were successfully fabricated on different substrates by directly imprinting the Ag ink with the isopropanol-treated PDMS stamp. Furthermore, the coffee-ring effect of the imprinting Ag patterns can be eliminated by optimizing the imprinting time, isopropanol-treating time, and imprinting temperatures. Studies show that the residual Ag ink in the contact region can be absorbed by the isopropanol-treated PDMS stamp due to the "like dissolves like" principle. Finally, this method was employed to fabricate the Ag electrodes for the thin-film transistors, attaining a mobility of ∼8 cm2 V-1 s-1, which is comparable to those with vacuum-processed electrodes. This process provides a simple, low-cost, residue-free, coffee-ring-free, and fast patterning method in the field of microelectronics.

9.
Ann Med ; 56(1): 2328521, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38727511

RESUMO

BACKGROUND: Cirrhosis is a disease that imposes a heavy burden worldwide, but its incidence varies widely by region. Therefore, we analysed data on the incidence and mortality of cirrhosis in 204 countries and territories from 1990-2019 and projected the disease development from 2019-2039. METHODS: Data on the incidence and mortality of liver cirrhosis from 1990 to 2019 were acquired from the public Global Burden of Disease (GBD) study. In addition, the average annual percentage change (AAPC) and estimated annual percentage change (EAPC) of the age-standardized rate (ASR) of cirrhosis in different regions were calculated. The estimates of risk factor exposure were summarized, and the proportion of causes and risk factors of liver cirrhosis and their relationship with the human development index (HDI) and socio-demographic index (SDI) were analysed. Trends in the incidence of cirrhosis in 2019-2039 were predicted using Nordpred and BAPC models. RESULTS: Globally, the ASR of cirrhosis incidence decreased by 0.05% per year from 25.7/100,000 in 1990 to 25.3/100,000 in 2019. The mortality risk associated with cirrhosis is notably lower in females than in males (13 per 100,000 vs 25 per 100,000). The leading cause of cirrhosis shifted from hepatitis B to C. Globally, alcohol use increased by 14%. In line, alcohol use contributed to 49.3% of disability-adjusted life years (DALYs) and 48.4% of global deaths from liver cirrhosis. Countries with a low ASR in 1990 experienced a faster increase in cirrhosis, whereas in 2019, the opposite was observed. In countries with high SDI, the ASR of cirrhosis is generally lower. Finally, projections indicate that the number and incidence of cirrhosis will persistently rise from 2019-2039. CONCLUSIONS: Cirrhosis poses an increasing health burden. Given the changing etiology, there is an imperative to strengthen the prevention of hepatitis C and alcohol consumption, to achieve early reduce the incidence of cirrhosis.


This study is an updated assessment of liver cirrhosis prevalence trends in 204 countries worldwide and the first to project trends over the next 20 years.The disease burden of cirrhosis is still increasing, and despite the decline in ASR, the number and prevalence of cirrhosis will continue to increase over the next two decades after 2019.It is alarming that the global surge in alcohol use is accompanied by an increase in DALYs and deaths due to liver cirrhosis.Liver cirrhosis remains a noteworthy public health event, and our study can further guide the development of national healthcare policies and the implementation of related interventions.


Assuntos
Previsões , Carga Global da Doença , Saúde Global , Cirrose Hepática , Humanos , Carga Global da Doença/tendências , Cirrose Hepática/epidemiologia , Masculino , Feminino , Incidência , Fatores de Risco , Saúde Global/estatística & dados numéricos , Saúde Global/tendências , Pessoa de Meia-Idade , Adulto , Idoso , Anos de Vida Ajustados por Qualidade de Vida
10.
Inorg Chem ; 63(23): 10471-10480, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787770

RESUMO

Two quaternary manganese selenites, A2(Mn2O)(SeO3)3 (A = K, Rb), have been synthesized by hydrothermal reactions. They both crystallize in a complex triclinic (P-1) structure built of Jahn-Teller (JT) distorted Mn3+O4+2 octahedra, connected into nearly isosceles [Mn3O14] triangles, themselves arranged into so-called "sawtooth (ST) chains". The K and Rb compounds show subtle variations in the orientations of the MnO4 planes inside the elementary triangles. The ST chains are structurally and magnetically isolated by SeO3 groups and alkali cations. In the ST chains, predominant ferromagnetic interactions were calculated and verified experimentally, which finally order antiferromagnetically between the chains around TN ≈ 22 K. The spin exchanges calculated by DFT + U and fitted by Monte Carlo simulations allow for the quantification of an effective "overall" model. The specific role of the µ3-O bridge on the ferromagnetic (FM) exchanges is discussed, together with spin reorientations observed in the ordered state. Magnetocrystalline anisotropy along the [110] direction stabilized by ∼50 meV per Mn by spin-orbit coupling (SOC) was found by DFT + U + SOC.

11.
J Environ Manage ; 359: 121065, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714038

RESUMO

This study addresses the challenge of incomplete separation of mechanically recovered residual films and impurities in cotton fields, examining their impact on resource utilization and environmental pollution. It introduces an innovative screening method that combines pneumatic force and mechanical vibration for processing crushed film residue mixtures. A double-action screening device integrating pneumatic force and a key-type vibrating screen was developed. The working characteristics of this device were analyzed to explore the dynamic characteristics and kinematic laws of the materials using theoretical analysis methods. This led to the revelation of the screening laws of residual films and impurities. Screening tests were conducted using the Central Composite Design method, considering factors such as fan outlet, fan speed, vibration frequency of the screen, and feeding amount, with the impurity-rate-in-film (Q) and film-content-in-impurity (W) as evaluation indexes. The significant influence of each factor on the indexes was determined, regression models between the test factors and indexes were established, and the effect laws of key parameters and their significant interaction terms on the indexes were interpreted. The optimal combination of working parameters for the screening device was identified through multivariable optimization methods. Validation tests under this optimal parameters combination showed that the impurity-rate-in-film was 3.08% and the film-content-in-impurity was 1.94%, with average errors between the test values and the predicted values of 3.36% and 5.98%, respectively, demonstrating the effectiveness of the proposed method. This research provides a novel method and technical reference for achieving effective separation of residual film and impurities, thereby enhancing resource utilization.


Assuntos
Gossypium , Fibra de Algodão/análise , Poluição Ambiental/prevenção & controle
12.
Exp Dermatol ; 33(4): e15082, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38664884

RESUMO

As a chronic relapsing disease, psoriasis is characterized by widespread skin lesions. The Psoriasis Area and Severity Index (PASI) is the most frequently utilized tool for evaluating the severity of psoriasis in clinical practice. Nevertheless, long-term monitoring and precise evaluation pose difficulties for dermatologists and patients, which is time-consuming, subjective and prone to evaluation bias. To develop a deep learning system with high accuracy and speed to assist PASI evaluation, we collected 2657 high-quality images from 1486 psoriasis patients, and images were segmented and annotated. Then, we utilized the YOLO-v4 algorithm to establish the model via four modules, we also conducted a human-computer comparison through quadratic weighted Kappa (QWK) coefficients and intra-class correlation coefficients (ICC). The YOLO-v4 algorithm was selected for model training and optimization compared with the YOLOv3, RetinaNet, EfficientDet and Faster_rcnn. The model evaluation results of mean average precision (mAP) for various lesion features were as follows: erythema, mAP = 0.903; scale, mAP = 0.908; and induration, mAP = 0.882. In addition, the results of human-computer comparison also showed a median consistency for the skin lesion severity and an excellent consistency for the area and PASI score. Finally, an intelligent PASI app was established for remote disease assessment and course management, with a pleasurable agreement with dermatologists. Taken together, we proposed an intelligent PASI app based on the image YOLO-v4 algorithm that can assist dermatologists in long-term and objective PASI scoring, shedding light on similar clinical assessments that can be assisted by computers in a time-saving and objective manner.


Assuntos
Algoritmos , Aprendizado Profundo , Psoríase , Índice de Gravidade de Doença , Psoríase/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos
13.
J Pharm Anal ; 14(4): 100936, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655399

RESUMO

This study introduces an innovative contour detection algorithm, PeakCET, designed for rapid and efficient analysis of natural product image fingerprints using comprehensive two-dimensional gas chromatogram (GC × GC). This method innovatively combines contour edge tracking with affinity propagation (AP) clustering for peak detection in GC × GC fingerprints, the first in this field. Contour edge tracking significantly reduces false positives caused by "burr" signals, while AP clustering enhances detection accuracy in the face of false negatives. The efficacy of this approach is demonstrated using three medicinal products derived from Curcuma wenyujin. PeakCET not only performs contour detection but also employs inter-group peak matching and peak-volume percentage calculations to assess the compositional similarities and differences among various samples. Furthermore, this algorithm compares the GC × GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different botanical origins. The findings reveal that genetic and geographical factors influence the accumulation of secondary metabolites in various plant tissues. Each sample exhibits unique characteristic components alongside common ones, and variations in content may influence their therapeutic effectiveness. This research establishes a foundational data-set for the quality assessment of Curcuma products and paves the way for the application of computer vision techniques in two-dimensional (2D) fingerprint analysis of GC × GC data.

14.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612852

RESUMO

Salinity is an environmental stress that severely impacts rice grain yield and quality. However, limited information is available on the molecular mechanism by which salinity reduces grain quality. In this study, we investigated the milling, appearance, eating and cooking, and nutritional quality among three japonica rice cultivars grown either under moderate salinity with an electrical conductivity of 4 dS/m or under non-saline conditions in a paddy field in Dongying, Shandong, China. Moderate salinity affected rice appearance quality predominantly by increasing chalkiness rate and chalkiness degree and affected rice eating and cooking and nutritional quality predominantly by decreasing amylose content and increasing protein content. We compared the expression levels of genes determining grain chalkiness, amylose content, and protein content in developing seeds (0, 5, 10, 15, and 20 days after flowering) of plants grown under saline or non-saline conditions. The chalkiness-related gene Chalk5 was up-regulated and WHITE-CORE RATE 1 was repressed. The genes Nuclear factor Y and Wx, which determine amylose content, were downregulated, while protein-content-associated genes OsAAP6 and OsGluA2 were upregulated by salinity in the developing seeds. These findings suggest some target genes that may be utilized to improve the grain quality under salinity stress conditions via gene-pyramiding breeding approaches.


Assuntos
Metanfetamina , Oryza , Oryza/genética , Amilose , Melhoramento Vegetal , Estresse Salino , Sementes/genética , Carbonato de Cálcio , Grão Comestível/genética
15.
J Pharm Pharmacol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642915

RESUMO

OBJECTIVES: Trilobatin, a glycosylated dihydrochalcone, has been reported to have anti-diabetic properties. However, the underlying mechanism remains unexplained. METHODS: In this investigation, the regulation of trilobatin on glucose metabolism of insulin resistance (IR)-HepG2 cells and streptozocin (STZ)-induced mice and its mechanism were evaluated. KEY FINDINGS: Different doses of trilobatin (5, 10 and 20 µM) increased glucose consumption, glycogen content, hexokinase (HK), and pyruvate kinase (PK) activity in IR-HepG2 cells. Among them, the HK and PK activity in IR-HepG2 cells treated with 20 µM trilobatin were 1.84 and 2.05 times than those of the IR-group. The overeating, body and tissue weight, insulin levels, liver damage, and lipid accumulation of STZ-induced mice were improved after feeding with different doses of trilobatin (10, 50, and 100 mg/kg/d) for 4 weeks. Compared with STZ-induced mice, fasting blood glucose decreased by 61.11% and fasting insulin (FINS) increased by 48.6% after feeding trilobatin (100 mg/kg/d). Meanwhile, data from quantitative real-time polymerase chain reaction (qRT-PCR) revealed trilobatin ameliorated glycogen synthesis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway in IR-HepG2 cells and in STZ-induced mice. Furthermore, in vitro and in vivo experiments showed that trilobatin ameliorated oxidative stress by regulating the mRNA expression of nuclear erythroid-2 related factor 2 (Nrf2)/kelch-like ECH associated protein-1 (Keap-1) pathway as well as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO-1). CONCLUSIONS: Our research reveals a novel pharmacological activity of trilobatin: regulating glucose metabolism through PI3K/Akt/GSK-3ß and Nrf2/Keap-1 signaling pathways, improving insulin resistance and reducing oxidative stress. Trilobatin can be used as a reliable drug resource for the treatment of glucose metabolism disorders.

17.
Physiol Mol Biol Plants ; 30(1): 123-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435855

RESUMO

This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150 mM) alone or combined with 500 µM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.

18.
Nat Commun ; 15(1): 1973, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438342

RESUMO

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s-1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s-1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm-2) for more than 1,000 h.

19.
World J Hepatol ; 16(2): 241-250, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495270

RESUMO

BACKGROUND: Portal vein thrombosis (PVT) is a commonthsn complication after splenectomy in patients with cirrhosis. However, the predictors of postoperative PVT are not known. AIM: To investigate the predictors of PVT after splenectomy in patient with cirrhosis. METHODS: A total of 45 patients with cirrhosis who underwent splenectomy were consecutively enrolled from January 2017 to December 2018. The incidence of PVT at 1 months, 3 months, and 12 months after splenectomy in patients with cirrhosis was observed. The hematological indicators, biochemical and coagulation parameters, and imaging features were recorded at baseline and at each observation point. The univariable, multivariable, receiver operating characteristic curve and time-dependent curve analyses were performed. RESULTS: The cumulative incidence of PVT was 40.0%, 46.6%, and 48.9% at 1 months, 3 months, and 12 months after splenectomy. Multivariable analysis showed that portal vein diameter (PVD) ≥ 14.5 mm and monthsdel end-stage liver disease (MELD) score > 10 were independent predictors of PVT at 1 months, 3 months, and 12 months after splenectomy (P < 0.05). Time-dependent curve showed that the cumulative incidence of PVT was significantly different between patients with MELD score ≤ 10 and > 10 (P < 0.05). In addition, the cumulative incidence of PVT in the PVD ≥ 14.5 mm group was significantly higher than that in the PVD < 14.5 mm group (P < 0.05). CONCLUSION: Wider PVD and MELD score > 10 were independent predictors of PVT at 1 months, 3 months, and 12 months after splenectomy in patient with cirrhosis.

20.
World J Hepatol ; 16(2): 164-176, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495282

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poses a major challenge to global health due to its high morbidity and mortality. Conventional chemotherapy is usually targeted to patients with intermediate to advanced stages, but it is often ineffective and suffers from problems such as multidrug resistance, rapid drug clearance, nonspecific targeting, high side effects, and low drug accumulation in tumor cells. In response to these limitations, recent advances in nanoparticle-mediated targeted drug delivery technologies have emerged as breakthrough approaches for the treatment of HCC. This review focuses on recent advances in nanoparticle-based targeted drug delivery systems, with special attention to various receptors overexpressed on HCC cells. These receptors are key to enhancing the specificity and efficacy of nanoparticle delivery and represent a new paradigm for actively targeting and combating HCC. We comprehensively summarize the current understanding of these receptors, their role in nanoparticle targeting, and the impact of such targeted therapies on HCC. By gaining a deeper understanding of the receptor-mediated mechanisms of these innovative therapies, more effective and precise treatment of HCC can be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA