Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Front Microbiol ; 15: 1433092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296297

RESUMO

Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.

2.
Sci Total Environ ; : 176283, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278479

RESUMO

The application of biochar in degraded farmland improves soil productivity while achieving the recycling of agricultural waste. The collapse of the physical structure of coastal saline soils will greatly reduce the carbon sequestration potential of biochar. Phosphorus- and magnesium-modified biochar greatly improve the stability of biochar, which endows them with the potential to greatly improve the organic carbon pool of coastal saline soil. However, changes in the properties of modified biochar increase the uncertainty of microbial driven CO2 and N2O release by affecting soil chemistry properties. In this study, through laboratory soil microcosmic experiment, we investigated the effects of magnesium-modified biochar (BCMg) and phosphorus-modified biochar (BCP) on CO2 and N2O releases from coastal saline soils, and further uncovered their potential mechanisms. Compared with unapplied biochar (CK) and unmodified biochar (BC) treatment, BCMg reduced both the releases of CO2 and N2O, and BCP decreased N2O release but enhanced CO2 release. pH is the medium through which BCMg affects the release of CO2 and N2O. Specifically, BCMg increased soil pH above 8.5, which reduced the metabolic activity of the microbial community, and the abundance of bacteria directly or indirectly involved in N2O production, thereby decreasing the releases of CO2 and N2O. The amendment of BCP changed soil elemental stoichiometry causing microbial N-limitation. Increasing CO2 release and decreasing N2O release were strategies for microorganisms to cope with N-limitation. These findings suggested that BCMg is superior to BCP in mitigating greenhouse gas emissions, providing a basis for the application of modified biochar to improve the carbon pool and reduce greenhouse gas emissions of coastal saline soil.

3.
ACS Omega ; 9(36): 37856-37868, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39281940

RESUMO

Implementing novel technologies, including the "well factory" model and zipper fracturing techniques, has become prevalent in shale gas development. During completion operations such as lowering casing and multistage fracturing, the casing is subjected to many complex loads, reducing its strength and increasing the risk of casing deformation. By establishing a casing wear model and conducting multistage cyclic loading experiments and numerical simulations, we analyzed the change rule of casing anticollapse strength under complex loads, developed a calculation method for casing comprehensive anticollapse ability under complex loads, and applied the method to an illustrative calculation. The study shows that the wear effect during completion has a negligible impact on the strength of the casing. The casing anticollapse strength exhibits a linear decline in correlation with the number of cycles. The zipper fracturing operation resulted in a nonuniform distribution of geo-stress around the well, and the casing anticollapse strength demonstrated a nearly linear decline in correlation with the nonuniformity of geo-stress. In the presence of both internal and external effects, the casing anticollapse strength exhibited a decline exceeding 15%, thereby increasing the risk of casing deformation. This research method can provide computational guidance for preventing casing deformation in field fracturing construction.

5.
Plant Physiol Biochem ; 215: 108986, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39106769

RESUMO

Arbuscular mycorrhizal fungi (AMF) and Chitooligosaccharide (COS) can increase the resistance of plants to disease. COS can also promote the symbiosis between AMF and plants. However, the effects of AMF & COS combined application on the rhizosphere soil microbial community of tobacco and the improvement of tobacco's resistance to black shank disease are poorly understood.·We treated tobacco with AMF, COS, and combined application of AMF & COS (AC), respectively. Then studied the incidence, physio-biochemical changes, root exudates, and soil microbial diversity of tobacco seedling that was inoculated with Phytophthora nicotianae. The antioxidant enzyme activity and root vigor of tobacco showed a regular of AC > AMF > COS > CK, while the severity of tobacco disease showed the opposite regular. AMF and COS enhance the resistance to black shank disease by enhancing root vigor, and antioxidant capacity, and inducing changes in the rhizosphere microecology of tobacco. We have identified key root exudates and critical soil microorganisms that can inhibit the growth of P. nicotianae. The presence of caprylic acid in root exudates and Bacillus (WdhR-2) in rhizosphere soil microorganisms is the key factor that inhibits P. nicotianae growth. AC can significantly increase the content of caprylic acid in tobacco root exudates compared to AMF and COS. Both AMF and COS can significantly increase the abundance of Bacillus in tobacco rhizosphere soil, but the abundance of Bacillus in AC is significantly higher than that in AMF and COS. This indicates that the combined application of AMF and COS is more effective than their individual use. These findings suggest that exogenous stimuli can induce changes in plant root exudates, regulate plant rhizosphere microbial community, and then inhibit the growth of pathogens, thereby improving plant resistance to diseases.


Assuntos
Quitosana , Micorrizas , Nicotiana , Oligossacarídeos , Phytophthora , Doenças das Plantas , Rizosfera , Plântula , Phytophthora/fisiologia , Micorrizas/fisiologia , Nicotiana/microbiologia , Nicotiana/efeitos dos fármacos , Oligossacarídeos/metabolismo , Plântula/microbiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Quitosana/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Quitina/análogos & derivados , Quitina/metabolismo , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Resistência à Doença/efeitos dos fármacos
6.
Bone Jt Open ; 5(7): 581-591, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991554

RESUMO

Aims: To investigate the risk factors for unsuccessful radial head reduction (RHR) in children with chronic Monteggia fractures (CMFs) treated surgically. Methods: A total of 209 children (mean age 6.84 years (SD 2.87)), who underwent surgical treatment for CMFs between March 2015 and March 2023 at six institutions, were retrospectively reviewed. Assessed risk factors included age, sex, laterality, dislocation direction and distance, preoperative proximal radial metaphysis width, time from injury to surgery, reduction method, annular ligament reconstruction, radiocapitellar joint fixation, ulnar osteotomy, site of ulnar osteotomy, preoperative and postoperative ulnar angulation, ulnar fixation method, progressive ulnar distraction, and postoperative cast immobilization. Independent-samples t-test, chi-squared test, and logistic regression analysis were used to identify the risk factors associated with unsuccessful RHR. Results: Redislocation occurred during surgery in 48 patients (23%), and during follow-up in 44 (21.1%). The mean follow-up of patients with successful RHR was 13.25 months (6 to 78). According to the univariable analysis, time from injury to surgery (p = 0.002) and preoperative dislocation distance (p = 0.042) were identified as potential risk factors for unsuccessful RHR. However, only time from injury to surgery (p = 0.007) was confirmed as a risk factor by logistic regression analysis. Receiver operating characteristic curve analysis and chi-squared test confirmed that a time from injury to surgery greater than 1.75 months increased the rate of unsuccessful RHR above the cutoff (p = 0.002). Conclusion: Time from injury to surgery is the primary independent risk factor for unsuccessful RHR in surgically treated children with CMFs, particularly in those with a time from injury to surgery of more than 1.75 months. No other factors were found to influence the incidence of unsuccessful RHR. Surgical reduction of paediatric CMFs should be performed within the first two months of injury whenever possible.

7.
J Foot Ankle Surg ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866200

RESUMO

In order to evaluate the early radiographic characteristics of the lateral talocalcaneal (L-TC) angle in patients with idiopathic clubfoot (ICF) and to investigate its prognostic significance for relapse after initial treatment with the Ponseti method. We retrospectively included 151 patients (96 males and 55 females; 227 feet) with ICF treated at our Institution between January 2005 and December 2014. The age at initial treatment was less than 6 months, and radiographs were obtained within 3 months of the Achilles tenotomy (mean age: 2.3 months; range: 0.77-6.8). All patients were followed up for at least 7 years (range, 7-18). The participants' feet were classified into 3 groups: relapsed (Group A), not relapsed (Group B), and normal foot groups which consisted of healthy feet in patients with unilateral ICF (Group C). All angle measurements were expressed in degrees. Forty-seven ICF feet in 33 patients relapsed, while 180 feet in 118 patients did not, and the age at relapse was 5.92 ± 1.91 years. Seventy-five normal feet were included in Group C. The average L-TC angle in Group A and B patients was 33.57° ± 12.05° and 39.37° ± 12.55°, respectively, while Group C was 49.61° ± 9.11°. A significant difference was found among the 3 groups of patients (F = 31.48, p < .001). The L-TC angle cut-off value below which a recurrence could be predicted was 36.1° (sensitivity, 74.47%). The L-TC angle of ICF patients treated using the Ponseti method were reduced compared to normal feet. An L-TC angle of <36.1° has relative value in predicting ICF relapse.

8.
Int J Biol Macromol ; 275(Pt 1): 133474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945338

RESUMO

The Bacillus genus is widely distributed in nature, has bacteriostatic and growth-promoting activities, and has broad application potential in agriculture. An exopolysaccharide (EPS) was extracted and purified from Bacillus velezensis HY23. Structural characterisation of the EPS was performed by chemical and spectroscopic analyses. Methylation analysis showed that the EPS of HY23 was composed of mannose and glucose at a ratio of 82:18 and was identified as glucomannan. Combined with the nuclear magnetic resonance (NMR) analysis, EPS from HY23 had a backbone of →2)-α-D-Manp-(1 â†’ and →2,6)-α-D-Manp-(1 â†’ branched at C-6 with terminal α-(3-O-Me)-D-Manp-(1 â†’ and →6)-α-D-Manp-(1 â†’ residues as the side chain. A certain amount of ß-D-Glcp residues were also present in backbone. Moreover, EPS significantly improved the nitrogen-fixing activity and salt resistance of soybean seedlings by regulating the antioxidant pool and expression of ion transporters. These findings indicate that EPS from B. velezensis HY23 is a potential biostimulant for enhancing plant resistance to salt stress.


Assuntos
Bacillus , Glycine max , Mananas , Estresse Salino , Bacillus/metabolismo , Mananas/química , Mananas/farmacologia , Mananas/metabolismo , Fixação de Nitrogênio , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antioxidantes/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia
9.
Infect Genet Evol ; 123: 105619, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906518

RESUMO

Human adenovirus type 41 (HAdV-F41) usually causes pediatrics gastroenteritis. However, it was reported to be associated with the outbreaks of severe acute hepatitis of unknown aetiology (SAHUA) in pediatrics during COVID-19 pandemic. In this study, we investigated the prevalence of enteric HAdV-F41 in 37,920 paediatric gastroenteritis cases from 2017 to 2022 in Guangzhou, China. All children presented were tested negative for SARS-CoV-2 during the "zero-COVID" period. The main clinical symptom of the children was diarrhea (96.5%). No fatalities nor liver abnormal symptoms was found. In 2021, one year since the pandemic of COVID-19, the prevalence of HAdV-F41 abruptly increased from 3.71% to 8.64% (P < 0.001). All of HAdV-F41 circulating worldwide were classified into eight different subtypes (G1-G8) based on the phylogenetic clustering permutation of the four capsid genes of HAdV-F41. G3 was the predominant subtype (56.2%; 77/137). CRV5 isolates from SAHUA cases belong to this subtype, in which N312D and H335D mutations in the short fiber knob were identified in both Guangzhou and CRV5 isolates, presumably changing the virus tropism by directly interacting with the heparin sulfate (HS) receptor. Additionally, a novel recombinant G6 subtype, which is unique and only circulating in China was first identified in this study. This is the first study highlighting the prevalence of HAdV-F41 in paediatric cases of gastroenteritis during COVID-19 pandemic in China. The clinical and viral evolution finding of HAdV-F41 provide insight into the clinical characteristics of children with HAdV-F41 infections as well as the uncertain role of HAdV-F41 in the cause of SAHUA.


Assuntos
Adenovírus Humanos , COVID-19 , Gastroenterite , Filogenia , SARS-CoV-2 , Humanos , Gastroenterite/virologia , Gastroenterite/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Adenovírus Humanos/genética , Adenovírus Humanos/classificação , Adenovírus Humanos/isolamento & purificação , Pré-Escolar , Criança , China/epidemiologia , Lactente , Feminino , Masculino , SARS-CoV-2/genética , Infecções por Adenovirus Humanos/virologia , Infecções por Adenovirus Humanos/epidemiologia , Prevalência
10.
J Pediatr Orthop ; 44(7): e580-e587, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38676464

RESUMO

OBJECTIVES: To assess the treatment and outcomes of supracondylar humeral fractures (SHFs) in children older than 10 years of age at the time of injury. METHODS: The study analyzed clinical data from 60 patients who sustained SHF, all over the age of 10 years, were analyzed. The patients included 49 males and 11 females with a mean age of 10.9 ± 0.9 years (range, 10 to 14.5). All patients underwent surgical treatment under general anesthesia. Closed reduction (CR) and percutaneous fixation were the primary treatment, with open reduction and internal fixation being employed only in cases CR was unsuccessful. The study assessed the healing of fractures by measuring the radiographic angles, including the carrying angle (RCA), Baumann's angle (BA), and metaphyseal-diaphyseal angle (MDA) on anteroposterior radiographs of the elbow joint. In addition, the study evaluated whether the anterior humeral line (AHL) appropriately passed through the middle third of the capitellum. The final follow-up visit used the Mayo Elbow Performance Index score (MEPI) and Flynn's criteria to analyze the recovery of elbow function. RESULTS: There were 15 (25%) SHF type II, 17 (28.3%) type III and 28 (46.7%) type IV. Of the 60 patients, 56 (93.3%) underwent successful CR, whereas 4 (6.7%) required open reduction and internal fixation because of an unsuccessful CR. The final follow-up showed the average BA as 72° ± 5.3°, the average MDA as 88.3° ± 2.8°, and the average RCA as 9.6° ± 3.9°. The AHL bisected accurately the capitellum in 59 cases (98.3%). The average range of elbow flexion-extension was 146.6° ± 8.6°, whereas the average MEPI score was 99.9 ± 0.6; 98.3% (n=59) were rated as excellent and 1.7% (n=1) were rated as good. According to Flynn's criteria, 86.7% had an excellent outcome (n=52), 10% had a good outcome (n=6), and 3.3% had a poor outcome (n=2). Only 1 patient (1.7%) experienced redisplacement. Eight cases of nerve injury were reported, with 7 involving the radial nerve and 1 involving the ulnar nerve; all resolved spontaneously. CONCLUSIONS: CR and percutaneous fixation have been shown to be effective in treating SHF in 93.3% of children aged 10 years old and older at the time of injury, with favorable radiographic and functional outcomes and a low risk of secondary displacement. Open reduction should only be considered when CR is ineffective.


Assuntos
Fixação Interna de Fraturas , Fraturas do Úmero , Humanos , Fraturas do Úmero/cirurgia , Fraturas do Úmero/diagnóstico por imagem , Masculino , Feminino , Criança , Resultado do Tratamento , Adolescente , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Seguimentos , Articulação do Cotovelo/cirurgia , Articulação do Cotovelo/diagnóstico por imagem , Amplitude de Movimento Articular , Consolidação da Fratura , Radiografia , Redução Aberta/métodos
11.
Nat Commun ; 15(1): 3520, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664402

RESUMO

The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.


Assuntos
Glycine max , Raízes de Plantas , Pseudomonas , Rizosfera , Pseudomonas/genética , Pseudomonas/metabolismo , Glycine max/microbiologia , Glycine max/metabolismo , Glycine max/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/efeitos dos fármacos , Purinas/metabolismo , Purinas/farmacologia , Estresse Salino/genética , Quimiotaxia/genética , Tolerância ao Sal/genética , Microbiologia do Solo , Xantina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
12.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Assuntos
Ácido Butírico , Microbioma Gastrointestinal , Extrato de Sementes de Uva , Camundongos Endogâmicos BALB C , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Camundongos , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ceco/microbiologia , Ceco/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação
13.
ACS Appl Mater Interfaces ; 16(12): 15143-15155, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38481099

RESUMO

Realizing controllable input of botanical pesticides is conducive to improving pesticide utilization, reducing pesticide residues, and avoiding environmental pollution but is extremely challenging. Herein, we constructed a smart pesticide-controlled release platform (namely, SCRP) for enhanced treatment of tobacco black shank based on encapsulating honokiol (HON) with mesoporous hollow structured silica nanospheres covered with pectin and chitosan oligosaccharide (COS). The SCRP has a loading capacity of 12.64% for HON and could effectively protect HON from photolysis. Owing to the pH- and pectinase-sensitive property of the pectin, the SCRP could smartly release HON in response to a low pH or a rich pectinase environment in the black shank-affected area. Consequently, the SCRP effectively inhibits the infection of P. nicotianae on tobacco with a controlled rate for tobacco black shank of up to 87.50%, which is mainly due to the SCRP's capability in accumulating ROS, changing cell membrane permeability, and affecting energy metabolism. In addition, SCRP is biocompatible, and the COS layer enables SCRP to show a significant growth-promoting effect on tobacco. These results indicate that the development of a stimuli-responsive controlled pesticide release system for plant disease control is of great potential and value for practical agriculture production.


Assuntos
Praguicidas , Praguicidas/farmacologia , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/química , Poligalacturonase , Agricultura , Pectinas
14.
Int Orthop ; 48(6): 1489-1499, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443716

RESUMO

PURPOSE: To compare the outcomes of type II pediatric phalangeal neck fractures (PPNFs) treated with closed reduction and cast immobilization (CRCI) versus closed reduction percutaneous pinning (CRPP), and evaluated the clinical efficacy of conservative versus surgical treatment of type II PPNFs via meta-analysis. METHODS: Patients aged ≤ 14 years with type II PPNFs were divided into conservative (CRCI) and operative (CRPP) groups. Radiographs measured angulation and translation; hand function was assessed with total active range of motion (TAM) and Quick-DASH. Complication rates were also compared between the groups. A meta-analysis of conservative versus operative treatment confirmed the clinical results. Statistical analysis was performed using SPSS 26.0 and R studio 3.0 with two-tailed, chi-squared, and Mann-Whitney U or t-tests, P < 0.05. Meta-analysis used fixed or random effects models, calculating mean differences and odds ratios for outcomes, and assessing heterogeneity with I2 and Q tests. RESULTS: Final angulation (3.4° ± 3.7° and 4.9° ± 5.4° vs. 3.6° ± 3.7° and 4.2° ± 4.3°) and displacement (6.3% ± 5.8% and 5.7% ± 4.7% vs. 5.8% ± 5.5% and 3.2% ± 4.2%) in the coronal and sagittal planes were not different statistically between the conservative and surgical groups (P > 0.05), but improved significantly compared to preoperative values (P < 0.05). Although Quick-DASH scores were comparable in both groups (P = 0.105), conservatively treated patients had a significantly better TAM at the last follow-up visit (P = 0.005). The complication rates were 24.2% and 41.7% in the surgical and conservatively treated groups respectively (P = 0.162). However, the latter primarily experienced imaging-related complications, whereas the former experienced functional complications (P = 0.046). Our meta-analysis (n = 181 patients) also showed comparable functional (P = 0.49) and radiographic (P = 0.59) outcomes and complication rates (P = 0.21) between the surgical (94 patients) and conservative (87 patients) groups. CONCLUSIONS: Conservative and surgical treatments are both reliable and safe approaches for managing type II PPNF in children. However, conservatively treated patients generally experience similar radiographic outcomes, lower complication rates, and better functional outcomes than surgically treated ones.


Assuntos
Fios Ortopédicos , Moldes Cirúrgicos , Falanges dos Dedos da Mão , Humanos , Criança , Falanges dos Dedos da Mão/lesões , Falanges dos Dedos da Mão/cirurgia , Masculino , Feminino , Adolescente , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/efeitos adversos , Resultado do Tratamento , Fraturas Ósseas/cirurgia , Amplitude de Movimento Articular , Pré-Escolar
15.
Plant Cell Rep ; 43(3): 74, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38379014

RESUMO

KEY MESSAGE: HanMYB1 was found to play positive roles in the modulation of anthocyanins metabolism based on the integrative analysis of different color cultivars and the related molecular genetic analyses. As a high value ornamental and edible crop with various colors, sunflowers (Helianthus annuus L.) provide an ideal system to understand the formation of flower color. Anthocyanins are major pigments in higher plants, which is associated with development of flower colors and ability of oxidation resistance. Here, we performed an integrative analysis of the transcriptome and flavonoid metabolome in five sunflower cultivars with different flower colors. According to differentially expressed genes and differentially accumulated flavonoids, these cultivars could be grouped into yellow and red. The results showed that more anthocyanins were accumulated in the red group flowers, especially the chrysanthemin. Some anthocyanins biosynthesis-related genes like UFGT (UDP-glycose flavonoid glycosyltransferase) also expressed more in the red group flowers. A MYB transcriptional factor, HanMYB1, was found to play vital positive roles in the modulation of anthocyanins metabolism by the integrative analysis. Overexpressed HanMYB1 in tobacco could deepen the flower color, increase the accumulation of anthocyanins and directly active the express of UFGT genes. Our findings indicated that the MYB transcriptional factors provide new insight into the dynamic regulation of the anthocyanin biosynthesis in facilitating sunflower color formation and anthocyanin accumulation.


Assuntos
Antocianinas , Helianthus , Antocianinas/metabolismo , Transcriptoma/genética , Helianthus/genética , Helianthus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Metaboloma , Flores , Regulação da Expressão Gênica de Plantas , Cor , Pigmentação/genética , Perfilação da Expressão Gênica
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 292-296, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387937

RESUMO

PI3K/AKT/mTOR signaling pathway is of great significance in the development and prognosis of tumors, and is closely related to the pathogenesis of multiple myeloma (MM). PI3K/AKT/mTOR signaling pathway can participate in the regulation of MM through multichannel and multitarget, such as regulating the tumor microenvironment of MM cells survival, affecting tumor development and migration, regulating the proliferation, apoptosis and autophagy of MM cells. It have shown that after the PI3K/AKT/mTOR signaling pathway is inhibited, the apoptosis and autophagy of MM cells are activated, which promote the death of MM cells and inhibit the metastasis and recurrence of MM cells. Therefore, indepth study of the mechanism of PI3K/AKT/mTOR signaling pathway in MM is helpful to elucidate the pathogenesis and prognosis of MM.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia/fisiologia , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 318-321, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387942

RESUMO

Multiple myeloma (MM) is a malignant disease with abnormal proliferation of clonal plasma cells. The development of the disease shows a vast heterogeneity, which is closely related to the interaction between MM cells and bone marrow microenvironment (BMM). The interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway can regulate the transcription of related soluble factors in BMM, promote the proliferation, anti-apoptosis, drug resistance and guide related bone destruction of MM cells. This article reviews the research progress on the effect of BMM regulated by IL-6/IL-6R/JAK2/STAT3 pathway on the biological behavior of MM, in order to provide new research ideas for targeted therapy and precise therapy of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Interleucina-6/metabolismo , Janus Quinase 2 , Medula Óssea/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptores de Interleucina-6/metabolismo , Microambiente Tumoral
18.
ACS Biomater Sci Eng ; 10(2): 838-850, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38178628

RESUMO

The development of remote surgery hinges on comprehending the mechanical properties of the tissue at the surgical site. Understanding the mechanical behavior of the medulla oblongata tissue is instrumental for precisely determining the remote surgery implementation site. Additionally, exploring this tissue's response under electric fields can inform the creation of electrical stimulation therapy regimens. This could potentially reduce the extent of medulla oblongata tissue damage from mechanical compression. Various types of pulsed electric fields were integrated into a custom-built indentation device for this study. Experimental findings suggested that applying pulsed electric fields amplified the shear modulus of the medulla oblongata tissue. In the electric field, the elasticity and viscosity of the tissue increased. The most significant influence was noted from the low-frequency pulsed electric field, while the burst pulsed electric field had a minimal impact. At the microstructural scale, the application of an electric field led to the concentration of myelin in areas distant from the surface layer in the medulla oblongata, and the orderly structure of proteoglycans became disordered. The alterations observed in the myelin and proteoglycans under an electric field were considered to be the fundamental causes of the changes in the mechanical behavior of the medulla oblongata tissue. Moreover, cell polarization and extracellular matrix cavitation were observed, with transmission electron microscopy results pointing to laminar separation within the myelin at the ultrastructure scale. This study thoroughly explored the impact of electric field application on the mechanical behavior and microstructure of the medulla oblongata tissue, delving into the underlying mechanisms. This investigation delved into the changes and mechanisms in the mechanical behavior and microstructure of medulla oblongata tissue under the influence of electric fields. Furthermore, this study could serve as a reference for the development of electrical stimulation regimens in the central nervous system. The acquired mechanical behavior data could provide valuable baseline information to aid in the evolution of remote surgery techniques involving the medulla oblongata tissue.


Assuntos
Bulbo , Proteoglicanas , Bulbo/fisiologia , Estimulação Elétrica , Proteoglicanas/farmacologia
19.
Meat Sci ; 210: 109436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266434

RESUMO

Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.


Assuntos
Extrato de Sementes de Uva , Carne de Porco , Proantocianidinas , Carne Vermelha , Suínos , Animais , Fibras Musculares Esqueléticas/metabolismo , Extrato de Sementes de Uva/farmacologia , Suplementos Nutricionais , Músculo Esquelético/metabolismo
20.
Ecotoxicol Environ Saf ; 270: 115872, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171098

RESUMO

Cadmium (Cd) contamination poses a substantial threat the environment, necessitating effective remediation strategies. Phytoremediation emerges as a cost-efficient and eco-friendly approach for reducing Cd levels in the soil. In this study, the suitability of A. venetum for ameliorating Cd-contaminated soils was evaluated. Mild Cd stress promoted seedling and root growth, with the root being identified as the primary tissue for Cd accumulation. The Cd content of roots ranged from 0.35 to 0.55 mg/g under treatment with 10-50 µM CdCl2·2.5 H2O, and the bioaccumulation factor ranged from 28.78 to 84.43. Transcriptome sequencing revealed 20,292 unigenes, and 7507 nonredundant differentially expressed genes (DEGs) were identified across five comparison groups. DEGs belonging to the "MAPK signaling pathway-plant," "monoterpenoid biosynthesis," and "flavonoid biosynthesis pathway" exhibited higher expression levels in roots compared to stems and leaves. In addition, cytokinin-related DEGs, ROS scavenger genes, such as P450, glutathione-S-transferase (GST), and superoxide dismutase (SOD), and the cell wall biosynthesis-related genes, CSLG and D-GRL, were also upregulated in the root tissue, suggesting that Cd promotes root development. Conversely, certain ABC transporter genes, (e.g, NRAMP5), and some vacuolar iron transporters, predominantly expressed in the roots, displayed a strong correlation with Cd content, revealing the mechanism underlying the compartmentalized storage of Cd in the roots. KEGG enrichment analysis of DEGs showed that the pathways associated with the biosynthesis of flavonoids, lignin, and some terpenoids were significantly enriched in the roots under Cd stress, underscoring the pivotal role of these pathways in Cd detoxification. Our study suggests A. venetum as a potential Cd-contaminated phytoremediation plant and provides insights into the molecular-level mechanisms of root development promotion and accumulation mechanism in response to Cd stress.


Assuntos
Apocynum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Apocynum/genética , Apocynum/metabolismo , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA