Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38752639

RESUMO

BACKGROUND: Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare disease that is characterized by autoinflammatory lesions on both bones and skin. The diverse manifestations and limited understanding of its etiology have hindered the diagnosis and treatment of this condition. SAPHO syndrome is also classified as a primary inflammatory osteitis. The onset of osteoarticular involvement in this disease is typically gradual, and the identification of associated biomarkers may be crucial for accurate diagnosis, effective treatment, and a better understanding of its underlying mechanisms. METHODS: We enrolled a total of 6 SAPHO patients and 3 healthy volunteers for this study. The miRNA expression profile in circulating exosomes was analyzed using next-generation sequencing. A total of 45 miRNAs were found to be differentially expressed in SAPHO patients. Linear discriminant analysis effect size analysis and Wilcoxon rank-sum test were employed to identify biomarkers based on these differentially expressed miRNAs. Among them, we selected 4 miRNAs as biomarkers for SAPHO syndrome, resulting in an area under the receiver operating characteristic curve of 1. RESULTS: The differentially expressed miRNAs indicated enrichment in immune system and endocrine system-related KEGG pathways, as well as infectious diseases and cancers. Furthermore, the most significantly enriched molecular functions in GO analysis were protein binding and catalytic activity. CONCLUSION: The exosomal miRNA profile in SAPHO syndrome exhibited significant changes, suggesting its potential as a candidate biomarker for diagnostic assistance, although further investigation is warranted to elucidate their role in the pathology.

2.
Proc Natl Acad Sci U S A ; 121(9): e2312784121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381783

RESUMO

The onset of apoptosis is characterized by a cascade of caspase activation, where initiator caspases are activated by a multimeric adaptor complex known as the apoptosome. In Drosophila melanogaster, the initiator caspase Dronc undergoes autocatalytic activation in the presence of the Dark apoptosome. Despite rigorous investigations, the activation mechanism for Dronc remains elusive. Here, we report the cryo-EM structures of an auto-inhibited Dark monomer and a single-layered, multimeric Dark/Dronc complex. Our biochemical analysis suggests that the auto-inhibited Dark oligomerizes upon binding to Dronc, which is sufficient for the activation of both Dark and Dronc. In contrast, the previously observed double-ring Dark apoptosome may represent a non-functional or "off-pathway" conformation. These findings expand our understanding on the molecular mechanism of apoptosis in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Apoptossomas/química , Caspases/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo
3.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38001375

RESUMO

The N6-methyladenosine (m6A) modification is a highly conserved RNA modification found in eukaryotic messenger RNAs (mRNAs). It plays a vital role in regulating various biological processes. Dysregulation of m6A modifications has been linked to a range of complex genetic diseases in humans. However, there has been a lack of comprehensive characterization and comparison of m6A modifications at the transcriptome-wide level within families. To address this gap, we profiled transcriptome-wide m6A methylation in 18 individuals across 6 Yoruba trio families. The m6A methylomes of these 18 individuals revealed that m6A modifications in children showed greater similarity to each other than to their parents. This suggests that m6A modifications are influenced by multiple factors rather than solely determined by genetic factors. Additionally, we found that mRNAs exhibiting m6A modifications specific to children were enriched in cell cycle control processes, while those with m6A modifications specific to parents were associated with chromatin modifications. Furthermore, our analysis on the interactions between differentially expressed m6A-related regulatory genes and age-related genes suggested that age might be one of the factors influencing m6A modifications. In summary, our study provided a valuable dataset that highlighted the differences and functional diversity of m6A modifications within and between trio families.


Assuntos
Adenosina , Transcriptoma , Criança , Humanos , Epigenoma , RNA Mensageiro , Metilação
4.
Cell Mol Immunol ; 21(1): 6-18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38114747

RESUMO

Emergency granulopoiesis and neutrophil mobilization that can be triggered by granulocyte colony-stimulating factor (G-CSF) through its receptor G-CSFR are essential for antibacterial innate defense. However, the epigenetic modifiers crucial for intrinsically regulating G-CSFR expression and the antibacterial response of neutrophils remain largely unclear. N6-methyladenosine (m6A) RNA modification and the related demethylase alkB homolog 5 (ALKBH5) are key epigenetic regulators of immunity and inflammation, but their roles in neutrophil production and mobilization are still unknown. We used cecal ligation and puncture (CLP)-induced polymicrobial sepsis to model systemic bacterial infection, and we report that ALKBH5 is required for emergency granulopoiesis and neutrophil mobilization. ALKBH5 depletion significantly impaired the production of immature neutrophils in the bone marrow of septic mice. In addition, Alkbh5-deficient septic mice exhibited higher retention of mature neutrophils in the bone marrow and defective neutrophil release into the circulation, which led to fewer neutrophils at the infection site than in their wild-type littermates. During bacterial infection, ALKBH5 imprinted production- and mobilization-promoting transcriptome signatures in both mouse and human neutrophils. Mechanistically, ALKBH5 erased m6A methylation on the CSF3R mRNA to increase the mRNA stability and protein expression of G-CSFR, consequently upregulating cell surface G-CSFR expression and downstream STAT3 signaling in neutrophils. The RIP-qPCR results confirmed the direct binding of ALKBH5 to the CSF3R mRNA, and the binding strength declined upon bacterial infection, accounting for the decrease in G-CSFR expression on bacteria-infected neutrophils. Considering these results collectively, we define a new role of ALKBH5 in intrinsically driving neutrophil production and mobilization through m6A demethylation-dependent posttranscriptional regulation, indicating that m6A RNA modification in neutrophils is a potential target for treating bacterial infections and neutropenia.


Assuntos
Infecções Bacterianas , Sepse , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Antibacterianos , Neutrófilos , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo
5.
Front Cell Infect Microbiol ; 13: 1266295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089814

RESUMO

Background: Stenotrophomonas maltophilia is a multidrug-resistant (MDR) opportunistic pathogen with high resistance to most clinically used antimicrobials. The dissemination of MDR S. maltophilia and difficult treatment of its infection in clinical settings are global issues. Methods: To provide more genetic information on S. maltophilia and find a better treatment strategy, we isolated five S. maltophilia, SMYN41-SMYN45, from a Chinese community that were subjected to antibiotic susceptibility testing, biofilm formation assay, and whole-genome sequencing. Whole-genome sequences were compared with other thirty-seven S. maltophilia sequences. Results: The five S. maltophilia strains had similar antibiotic resistance profiles and were resistant to ß-lactams, aminoglycosides, and macrolides. They showed similar antimicrobial resistance (AMR) genes, including various efflux pumps, ß-lactamase resistance genes (blaL1/2), aminoglycoside resistance genes [aac(6'), aph(3'/6)], and macrolide-resistant gene (MacB). Genome sequencing analysis revealed that SMYN41-SMYN45 belonged to sequence type 925 (ST925), ST926, ST926, ST31, and ST928, respectively, and three new STs were identified (ST925, ST926, and ST928). Conclusion: This study provides genetic information by comparing genome sequences of several S. maltophilia isolates from a community of various origins, with the aim of optimizing empirical antibiotic medication and contributing to worldwide efforts to tackle antibiotic resistance.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resistência Microbiana a Medicamentos , Genômica , Testes de Sensibilidade Microbiana
6.
BMC Med Genomics ; 16(1): 209, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670284

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS: A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS: Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION: This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Polimorfismo de Nucleotídeo Único , Biologia Computacional , Loci Gênicos , Receptores de Prostaglandina E Subtipo EP4 , Proteínas Quinases Ativadas por AMP
7.
Nat Cell Biol ; 25(9): 1359-1368, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640841

RESUMO

N6-methyladenosine (m6A) methylation can be deposited on chromatin-associated RNAs (caRNAs) by the RNA methyltransferase complex (MTC) to regulate chromatin state and transcription. However, the mechanism by which MTC is recruited to distinct genomic loci remains elusive. Here we identify RBFOX2, a well-studied RNA-binding protein, as a chromatin factor that preferentially recognizes m6A on caRNAs. RBFOX2 can recruit RBM15, an MTC component, to facilitate methylation of promoter-associated RNAs. RBM15 also physically interacts with YTHDC1 and recruits polycomb repressive complex 2 (PRC2) to the RBFOX2-bound loci for chromatin silencing and transcription suppression. Furthermore, we found that this RBFOX2/m6A/RBM15/YTHDC1/PRC2 axis plays a critical role in myeloid leukaemia. Downregulation of RBFOX2 notably inhibits survival/proliferation of acute myeloid leukaemia cells and promotes their myeloid differentiation. RBFOX2 is also required for self-renewal of leukaemia stem/initiation cells and acute myeloid leukaemia maintenance. Our study presents a pathway of m6A MTC recruitment and m6A deposition on caRNAs, resulting in locus-selective chromatin regulation, which has potential therapeutic implications in leukaemia.


Assuntos
Leucemia Mieloide , Humanos , Diferenciação Celular/genética , Cromatina/genética , RNA , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
8.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402593

RESUMO

In Caenorhabditis elegans (C. elegans), onset of programmed cell death is marked with the activation of CED-3, a process that requires assembly of the CED-4 apoptosome. Activated CED-3 forms a holoenzyme with the CED-4 apoptosome to cleave a wide range of substrates, leading to irreversible cell death. Despite decades of investigations, the underlying mechanism of CED-4-facilitated CED-3 activation remains elusive. Here, we report cryo-EM structures of the CED-4 apoptosome and three distinct CED-4/CED-3 complexes that mimic different activation stages for CED-3. In addition to the previously reported octamer in crystal structures, CED-4, alone or in complex with CED-3, exists in multiple oligomeric states. Supported by biochemical analyses, we show that the conserved CARD-CARD interaction promotes CED-3 activation, and initiation of programmed cell death is regulated by the dynamic organization of the CED-4 apoptosome.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Apoptossomas/metabolismo , Apoptose
9.
Ultrasound Med Biol ; 49(9): 1930-1939, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391293

RESUMO

OBJECTIVE: The aim of the work described here was to provide an evidence-based evaluation of contrast-enhanced ultrasonography (CEUS) in acute kidney injury (AKI) and assess variations in renal microperfusion with CEUS quantitative parameters in patients at a high risk of developing AKI. METHODS: A meta-analysis and systematic review were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Embase, MEDLINE, Web of Science and the Cochrane Library databases were used to search the relevant articles systematically (2000-2022). Studies using CEUS to assess renal cortical microcirculation in AKI were included. RESULTS: Six prospective studies (374 patients) were included. The overall quality of included studies was moderate to high. CEUS measures, maximum intensity (standard mean difference [SMD]: -1.37, 95% confidence interval [CI]: -1.64 to -1.09) and wash-in rate (SMD: -0.77, 95% CI: -1.09 to -0.45) were lower in the AKI+ group than in the AKI- group, and mean transit time (SMD: 0.76, 95% CI: 0.11-1.40) and time to peak (SMD: 1.63, 95% CI: 0.99-2.27) were higher in the AKI+ group. Moreover, maximum intensity and wash-in rate values changed before creatinine changed in the AKI+ group. CONCLUSION: Patients with AKI had reduced microcirculatory perfusion, prolonged perfusion time and a reduced rising slope in the renal cortex, which occurred before serum creatinine changes. And they could be measured using CEUS, indicating that CEUS could help in the diagnosis of AKI.


Assuntos
Injúria Renal Aguda , Humanos , Estudos Prospectivos , Microcirculação , Injúria Renal Aguda/diagnóstico por imagem , Rim/diagnóstico por imagem , Ultrassonografia , Meios de Contraste
10.
Nat Neurosci ; 26(8): 1328-1338, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365312

RESUMO

Repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we show that N6-methyladenosine (m6A), the most prevalent internal mRNA modification, is downregulated in C9ORF72-ALS/FTD patient-derived induced pluripotent stem cell (iPSC)-differentiated neurons and postmortem brain tissues. The global m6A hypomethylation leads to transcriptome-wide mRNA stabilization and upregulated gene expression, particularly for genes involved in synaptic activity and neuronal function. Moreover, the m6A modification in the C9ORF72 intron sequence upstream of the expanded repeats enhances RNA decay via the nuclear reader YTHDC1, and the antisense RNA repeats can also be regulated through m6A modification. The m6A reduction increases the accumulation of repeat RNAs and the encoded poly-dipeptides, contributing to disease pathogenesis. We further demonstrate that, by elevating m6A methylation, we could significantly reduce repeat RNA levels from both strands and the derived poly-dipeptides, rescue global mRNA homeostasis and improve survival of C9ORF72-ALS/FTD patient iPSC-derived neurons.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , RNA , RNA Mensageiro
11.
Cell Discov ; 9(1): 48, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193681

RESUMO

Life science studies involving clustered regularly interspaced short palindromic repeat (CRISPR) editing generally apply the best-performing guide RNA (gRNA) for a gene of interest. Computational models are combined with massive experimental quantification on synthetic gRNA-target libraries to accurately predict gRNA activity and mutational patterns. However, the measurements are inconsistent between studies due to differences in the designs of the gRNA-target pair constructs, and there has not yet been an integrated investigation that concurrently focuses on multiple facets of gRNA capacity. In this study, we analyzed the DNA double-strand break (DSB)-induced repair outcomes and measured SpCas9/gRNA activities at both matched and mismatched locations using 926,476 gRNAs covering 19,111 protein-coding genes and 20,268 non-coding genes. We developed machine learning models to forecast the on-target cleavage efficiency (AIdit_ON), off-target cleavage specificity (AIdit_OFF), and mutational profiles (AIdit_DSB) of SpCas9/gRNA from a uniformly collected and processed dataset by deep sampling and massively quantifying gRNA capabilities in K562 cells. Each of these models exhibited superlative performance in predicting SpCas9/gRNA activities on independent datasets when benchmarked with previous models. A previous unknown parameter was also empirically determined regarding the "sweet spot" in the size of datasets used to establish an effective model to predict gRNA capabilities at a manageable experimental scale. In addition, we observed cell type-specific mutational profiles and were able to link nucleotidylexotransferase as the key factor driving these outcomes. These massive datasets and deep learning algorithms have been implemented into the user-friendly web service http://crispr-aidit.com to evaluate and rank gRNAs for life science studies.

12.
J Biol Chem ; 299(6): 104831, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201587

RESUMO

Viral proteases play key roles in viral replication, and they also facilitate immune escape by proteolyzing diverse target proteins. Deep profiling of viral protease substrates in host cells is beneficial for understanding viral pathogenesis and for antiviral drug discovery. Here, we utilized substrate phage display coupled with protein network analysis to identify human proteome substrates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteases, including papain-like protease (PLpro) and 3C-like protease (3CLpro). We first performed peptide substrates selection of PLpro and 3CLpro, and we then used the top 24 preferred substrate sequences to identify a total of 290 putative protein substrates. Protein network analysis revealed that the top clusters of PLpro and 3CLpro substrate proteins contain ubiquitin-related proteins and cadherin-related proteins, respectively. We verified that cadherin-6 and cadherin-12 are novel substrates of 3CLpro, and CD177 is a novel substrate of PLpro using in vitro cleavage assays. We thus demonstrated that substrate phage display coupled with protein network analysis is a simple and high throughput method to identify human proteome substrates of SARS-CoV-2 viral proteases for further understanding of virus-host interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Proteases Virais , Humanos , Peptídeo Hidrolases/metabolismo , Proteoma , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo
13.
Protein Cell ; 14(9): 683-697, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37030005

RESUMO

METTL3 and METTL14 are two components that form the core heterodimer of the main RNA m6A methyltransferase complex (MTC) that installs m6A. Surprisingly, depletion of METTL3 or METTL14 displayed distinct effects on stemness maintenance of mouse embryonic stem cell (mESC). While comparable global hypo-methylation in RNA m6A was observed in Mettl3 or Mettl14 knockout mESCs, respectively. Mettl14 knockout led to a globally decreased nascent RNA synthesis, whereas Mettl3 depletion resulted in transcription upregulation, suggesting that METTL14 might possess an m6A-independent role in gene regulation. We found that METTL14 colocalizes with the repressive H3K27me3 modification. Mechanistically, METTL14, but not METTL3, binds H3K27me3 and recruits KDM6B to induce H3K27me3 demethylation independent of METTL3. Depletion of METTL14 thus led to a global increase in H3K27me3 level along with a global gene suppression. The effects of METTL14 on regulation of H3K27me3 is essential for the transition from self-renewal to differentiation of mESCs. This work reveals a regulatory mechanism on heterochromatin by METTL14 in a manner distinct from METTL3 and independently of m6A, and critically impacts transcriptional regulation, stemness maintenance, and differentiation of mESCs.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Metilação , Histonas/metabolismo , RNA Mensageiro/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo
14.
Nat Commun ; 13(1): 7545, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509752

RESUMO

CRISPR technology holds significant promise for biological studies and gene therapies because of its high flexibility and efficiency when applied in mammalian cells. But endonuclease (e.g., Cas9) potentially generates undesired edits; thus, there is an urgent need to comprehensively identify off-target sites so that the genotoxicities can be accurately assessed. To date, it is still challenging to streamline the entire process to specifically label and efficiently enrich the cleavage sites from unknown genomic locations. Here we develop PEAC-seq, in which we adopt the Prime Editor to insert a sequence-optimized tag to the editing sites and enrich the tagged regions with site-specific primers for high throughput sequencing. Moreover, we demonstrate that PEAC-seq could identify DNA translocations, which are more genotoxic but usually overlooked by other off-target detection methods. As PEAC-seq does not rely on exogenous oligodeoxynucleotides to label the editing site, we also conduct in vivo off-target identification as proof of concept. In summary, PEAC-seq provides a comprehensive and streamlined strategy to identify CRISPR off-targeting sites in vitro and in vivo, as well as DNA translocation events. This technique further diversified the toolkit to evaluate the genotoxicity of CRISPR applications in research and clinics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Endonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos/genética
15.
Nat Commun ; 13(1): 5773, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182931

RESUMO

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Assuntos
Cálcio , Splicing de RNA , Processamento Alternativo/genética , Sequência de Bases , Éxons/genética , Regulação da Expressão Gênica , Íntrons/genética
16.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955589

RESUMO

Sirex noctilio Fabricius (Hymenoptera Siricidae) is a major quarantine pest responsible for substantial economic losses in the pine industry. To achieve better pest control, (Z)-3-decen-ol was identified as the male pheromone and used as a field chemical trapping agent. However, the interactions between odorant-binding proteins (OBPs) and pheromones are poorly described. In this study, SnocOBP9 had a higher binding affinity with Z3D (Ki = 1.53 ± 0.09 µM) than other chemical ligands. Molecular dynamics simulation and binding mode analysis revealed that several nonpolar residues were the main drivers for hydrophobic interactions between SnocOBP9 and Z3D. Additionally, computational alanine scanning results indicated that five amino acids (MET54, PHE57, PHE71, PHE74, LEU116) in SnocOBP9 could potentially alter the binding affinity to Z3D. Finally, we used single-site-directed mutagenesis to substitute these five residues with alanine. These results imply that the five residues play crucial roles in the SnocOBP9-Z3D complex. Our research confirmed the function of SnocOBP9, uncovered the key residues involved in SnocOBP9-Z3D interactions, and provides an inspiration to improve the effects of pheromone agent traps.


Assuntos
Himenópteros , Receptores Odorantes , Alanina/metabolismo , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Feromônios/metabolismo , Ligação Proteica , Receptores Odorantes/metabolismo
17.
Front Neurosci ; 16: 930028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769696

RESUMO

Symptoms of vertigo are frequently reported and are usually accompanied by eye-movements called nystagmus. In this article, we designed a three-dimensional nystagmus recognition model and a benign paroxysmal positional vertigo automatic diagnosis system based on deep neural network architectures (Chinese Clinical Trials Registry ChiCTR-IOR-17010506). An object detection model was constructed to track the movement of the pupil centre. Convolutional neural network-based models were trained to detect nystagmus patterns in three dimensions. Our nystagmus detection models obtained high areas under the curve; 0.982 in horizontal tests, 0.893 in vertical tests, and 0.957 in torsional tests. Moreover, our automatic benign paroxysmal positional vertigo diagnosis system achieved a sensitivity of 0.8848, specificity of 0.8841, accuracy of 0.8845, and an F1 score of 0.8914. Compared with previous studies, our system provides a clinical reference, facilitates nystagmus detection and diagnosis, and it can be applied in real-world medical practices.

18.
Front Mol Neurosci ; 15: 916458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706425

RESUMO

Objective: Cisplatin is a broad-spectrum anti-tumour drug commonly used in clinical practice. However, its ototoxicity greatly limits its clinical application, and no effective method is available to prevent this effect. Endoplasmic reticulum stress (ERS) is reportedly involved in cisplatin ototoxicity, but the exact mechanism remains unclear. Therefore, this study aimed to investigate the role of eukaryotic translation initiation factor 2α (eIF2α) signalling and its dephosphorylation inhibitor salubrinal in cisplatin ototoxicity. Methods: We evaluated whether salubrinal could protect against cisplatin-induced damage in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and mouse cochlear explants. By knocking down eIF2α, we elucidated the vital role of eIF2α in cisplatin-induced damage in HEI-OC1 cells. Whole-mount immunofluorescent staining and confocal microscopy of mouse cochlear explants and HEI-OC1 cells were performed to analyse cisplatin-induced damage in cochlear hair cells and the auditory cell line. Results: Data suggested salubrinal attenuated cisplatin-induced hair cell injury by inhibiting apoptosis. In addition, salubrinal significantly reduced ERS levels in hair cells via eIF2α signalling, while eIF2α knockdown inhibited the protective effect of salubrinal. Significance: Salubrinal and eIF2α signalling play a role in protecting against cisplatin-induced ototoxicity, and pharmacological inhibition of eIF2α-mediated ERS is a potential treatment for cisplatin-induced damage in the cochlea and HEI-OC1 cells.

19.
Nucleic Acids Res ; 50(11): 6575-6586, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35670669

RESUMO

Simultaneous targeting multiple genes is a big advantage of CRISPR (clustered regularly interspaced short palindromic repeats) genome editing but challenging to achieve in CRISPR screening. The crosstalk among genes or gene products is a common and fundamental mechanism to ensure cellular stability and functional diversity. However, the screening approach to map high-order gene combinations to the interesting phenotype is still lacking. Here, we developed a universal in-library ligation strategy and applied it to generate multiplexed CRISPR library, which could perturb four pre-designed targets in a cell. We conducted in vivo CRISPR screening for potential guide RNA (gRNA) combinations inducing anti-tumor immune responses. Simultaneously disturbing a combination of three checkpoints in CD8+ T cells was demonstrated to be more effective than disturbing Pdcd1 only for T cell activation in the tumor environment. This study developed a novel in-library ligation strategy to facilitate the multiplexed CRISPR screening, which could extend our ability to explore the combinatorial outcomes from coordinated gene behaviors.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , RNA Guia de Cinetoplastídeos , Linfócitos T CD8-Positivos/imunologia , Biblioteca Gênica , Ativação Linfocitária , Neoplasias/imunologia , RNA Guia de Cinetoplastídeos/genética
20.
Signal Transduct Target Ther ; 7(1): 194, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35764614

RESUMO

Neutrophil migration into the site of infection is necessary for antibacterial innate defense, whereas impaired neutrophil migration may result in excessive inflammation and even sepsis. The neutrophil migration directed by extracellular signals such as chemokines has been extensively studied, yet the intrinsic mechanism for determining neutrophil ability to migrate needs further investigation. N6-methyladenosine (m6A) RNA modification is important in immunity and inflammation, and our preliminary data indicate downregulation of RNA m6A demethylase alkB homolog 5 (ALKBH5) in neutrophils during bacterial infection. Whether m6A modification and ALKBH5 might intrinsically modulate neutrophil innate response remain unknown. Here we report that ALKBH5 is required for antibacterial innate defense by enhancing intrinsic ability of neutrophil migration. We found that deficiency of ALKBH5 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture (CLP), and Alkbh5-deficient CLP mice exhibited higher bacterial burden and massive proinflammatory cytokine production in the peritoneal cavity and blood because of less neutrophil migration. Alkbh5-deficient neutrophils had lower CXCR2 expression, thus exhibiting impaired migration toward chemokine CXCL2. Mechanistically, ALKBH5-mediated m6A demethylation empowered neutrophils with high migration capability through altering the RNA decay, consequently regulating protein expression of its targets, neutrophil migration-related molecules, including increased expression of neutrophil migration-promoting CXCR2 and NLRP12, but decreased expression of neutrophil migration-suppressive PTGER4, TNC, and WNK1. Our findings reveal a previously unknown role of ALKBH5 in imprinting migration-promoting transcriptome signatures in neutrophils and intrinsically promoting neutrophil migration for antibacterial defense, highlighting the potential application of targeting neutrophil m6A modification in controlling bacterial infections.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Neutrófilos , Sepse , Animais , Antibacterianos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Motivação , RNA/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Sepse/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA