Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 626(7999): 635-642, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297127

RESUMO

Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic ß-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-ß1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Elasticidade , Matriz Extracelular , Cirrose Hepática , Neoplasias Hepáticas , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Viscosidade , Proteínas de Sinalização YAP/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
2.
Chem Soc Rev ; 52(16): 5706-5743, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37525607

RESUMO

Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.

3.
Nat Commun ; 13(1): 7330, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443314

RESUMO

The rapidly developing spatial omics generated datasets with diverse scales and modalities. However, most existing methods focus on modeling dynamics of single cells while ignore microenvironments (MEs). Here we present SOTIP (Spatial Omics mulTIPle-task analysis), a versatile method incorporating MEs and their interrelationships into a unified graph. Based on this graph, spatial heterogeneity quantification, spatial domain identification, differential microenvironment analysis, and other downstream tasks can be performed. We validate each module's accuracy, robustness, scalability and interpretability on various spatial omics datasets. In two independent mouse cerebral cortex spatial transcriptomics datasets, we reveal a gradient spatial heterogeneity pattern strongly correlated with the cortical depth. In human triple-negative breast cancer spatial proteomics datasets, we identify molecular polarizations and MEs associated with different patient survivals. Overall, by modeling biologically explainable MEs, SOTIP outperforms state-of-art methods and provides some perspectives for spatial omics data exploration and interpretation.


Assuntos
Córtex Cerebral , Voo Espacial , Animais , Camundongos , Humanos , Proteômica , Análise Espacial , Sobrevida
4.
Sci Adv ; 8(5): eabj3967, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108058

RESUMO

Translational regulation plays an important role in gene expression and function. Although the transcriptional dynamics of mouse preimplantation embryos have been well characterized, the global mRNA translation landscape and the master regulators of zygotic genome activation (ZGA) remain unknown. Here, by developing and applying a low-input ribosome profiling (LiRibo-seq) technique, we profiled the mRNA translation landscape in mouse preimplantation embryos and revealed the translational dynamics during mouse preimplantation development. We identified a marked translational transition from MII oocytes to zygotes and demonstrated that active translation of maternal mRNAs is essential for maternal-to-zygotic transition (MZT). We further showed that two maternal factors, Smarcd2 and Cyclin T2, whose translation is activated in zygotes, are required for chromatin reprogramming and ZGA, respectively. Our study thus not only filled in a knowledge gap on translational regulation during mammalian preimplantation development but also revealed insights into the critical function of maternal mRNA translation in MZT.


Assuntos
RNA Mensageiro Estocado , Zigoto , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Camundongos , Biossíntese de Proteínas , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Zigoto/metabolismo
5.
Foods ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068837

RESUMO

To investigate the effect of soy protein isolate on the quality of whole-grain flat rice noodles, the texture as well as the cooking properties and flavor of flat rice noodles, whole-grain flat rice noodles and whole-grain flat rice noodles with soy protein isolate were investigated. Among the three tested rice noodles, whole-grain flat rice noodles with soy protein isolate showed the highest cohesiveness, adhesiveness, resilience, and springiness. Compared to the flat rice noodles and whole-grain flat rice noodles, whole-grain flat rice noodles with soy protein isolate increased their moisture content and water absorption, whereas the opposite trend was observed for their cooking loss. The electronic nose analysis showed stronger response values at W5S, W1W, and W2W. Solid phase micro extraction and gas chromatography-mass spectrometry results showed that aldehydes are the main volatile compounds in whole-grain flat rice noodles and whole-grain flat rice noodles with soy protein isolate. Moreover, seven more volatile compounds were detected in whole-grain flat rice noodles with soy protein isolate compared to flat rice noodles and whole-grain flat rice noodles. The whole-grain flat noodles with the addition of SPI are more sensory acceptable. Thus, soy protein isolate, as a natural and safe additive, could be used to improve the quality and enrich the flavor of whole-grain flat rice noodles.

6.
Genes Dev ; 34(3-4): 166-178, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919188

RESUMO

Oocytes are indispensable for mammalian life. Thus, it is important to understand how mature oocytes are generated. As a critical stage of oocytes development, meiosis has been extensively studied, yet how chromatin remodeling contributes to this process is largely unknown. Here, we demonstrate that the ATP-dependent chromatin remodeling factor Snf2h (also known as Smarca5) plays a critical role in regulating meiotic cell cycle progression. Females with oocyte-specific depletion of Snf2h are infertile and oocytes lacking Snf2h fail to undergo meiotic resumption. Mechanistically, depletion of Snf2h results in dysregulation of meiosis-related genes, which causes failure of maturation-promoting factor (MPF) activation. ATAC-seq analysis in oocytes revealed that Snf2h regulates transcription of key meiotic genes, such as Prkar2b, by increasing its promoter chromatin accessibility. Thus, our studies not only demonstrate the importance of Snf2h in oocyte meiotic resumption, but also reveal the mechanism underlying how a chromatin remodeling factor can regulate oocyte meiosis.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Fator Promotor de Maturação/genética , Meiose/genética , Oogênese/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Mesotelina , Camundongos , Oócitos/citologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA