Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39087727

RESUMO

PbS quantum dots (QDs) are promising for short-wave infrared (SWIR) photodetection and imaging. Solid-state ligand exchange (SSLE) is a low-fabrication-threshold QD solid fabrication method. However, QD treatment by SSLE remains challenging in seeking refined surface passivation to achieve the desired device performance. This work investigates using NaAc in the ligand exchange process to enhance the film morphology and electronic coupling configuration of QD solids. By implementing various film and photodetector device characterization studies, we confirm that adding NaAc with a prominent adding ratio of 20 wt % NaAc with tetrabutylammonium iodide (TBAI) in the SSLE leads to an improved film morphology, reduced surface roughness, and decreased trap states in the QD solid films. Moreover, compared to the devices without NaAc treatment, those fabricated with NaAc-treated QD solids exhibit an enhanced performance, including lower dark current density (<100 nA/cm2), faster response speed, higher responsivity, detectivity, and external quantum efficiency (EQE reaching 25%). The discoveries can be insightful in developing efficient, low-cost, and low-fabrication-threshold QD SWIR detection and imager applications.

2.
Ann Vasc Surg ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096958

RESUMO

BACKGROUND: Chronic limb-threatening ischemia (CLTI) represents the severest manifestation of peripheral artery disease. Malnutrition is closely associated with poor clinical outcomes in patients with chronic diseases. The Controlling Nutritional Status (CONUT) score is a tool to evaluate the systemic inflammation and nutritional status. This study aimed to investigate the association of baseline CONUT score with mortality in patients with CLTI following endovascular revascularization. METHODS: A single-center retrospective analysis of patients with CLTI undergoing endovascular revascularization between January 2015 and December 2022 was performed. Preoperative nutritional status was evaluated using CONUT score, which was calculated using the serum albumin concentration, total peripheral lymphocyte count, and total cholesterol concentration. A CONUT score ≥5 indicates moderate or severe malnutrition. The Kaplan-Meier and multivariate Cox proportional hazards regression were used for survival analysis and to evaluate the risk factors associated with mortality. RESULTS: Among 232 enrolled patients, 20.7% of patients had moderate or severe malnutrition defined by the CONUT score. During a median follow-up of 2.1 (interquartile ranges, 1.0-3.5) years, 87 (37.5%) patients died. The 3-year overall survival rate in patients with CLTI who underwent endovascular revascularization was 63.7%. The high CONUT (≥5) group had significantly worse 3-year overall survival (42.0% versus 68.8%, P=0.004) and limb salvage (73.3% versus 84.1%, P=0.005) rates than the low CONUT (<5) group. Multivariate analysis showed that high CONUT score was significantly associated with increased risk for mortality in patients with CLTI after endovascular revascularization (hazard ratio, 1.687; 95% confidence interval, 1.031-2.759; P=0.037). CONCLUSION: The present study indicated that moderate or severe malnutrition defined by the CONUT score was significantly associated with increased mortality in patients with CLTI following endovascular revascularization. Future study is required to evaluate the efficacy of nutritional intervention in these patients.

3.
Small ; : e2404815, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105462

RESUMO

The strong anti-inflammatory effect of methylprednisolone (MP) is a necessary treatment for various severe cases including acute spinal cord injury (SCI). However, concerns have been raised regarding adverse effects from MP, which also severely limits its clinical application. Natural polyphenols, due to their rich phenolic hydroxyl chemical properties, can form dynamic structures without additional modification, achieving targeted enrichment and drug release at the disease lesion, making them a highly promising carrier. Considering the clinical application challenges of MP, a natural polyphenolic platform is employed for targeted and efficient delivery of MP, reducing its systemic side effects. Both in vitro and SCI models demonstrated polyphenols have multiple advantages as carriers for delivering MP: (1) Achieved maximum enrichment at the injured site in 2 h post-administration, which met the desires of early treatment for diseases; (2) Traceless release of MP; (3) Reducing its side effects; (4) Endowed treatment system with new antioxidative properties, which is also an aspect that needs to be addressed for diseases treatment. This study highlighted a promising prospect of the robust delivery system based on natural polyphenols can successfully overcome the barrier of MP treatment, providing the possibility for its widespread clinical application.

4.
Int J Sex Health ; 36(3): 317-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148921

RESUMO

Masculinity is validated as a protective factor in mental health for gay population. However, potential mediators between masculinity and mental health remain unclear. Mindfulness, as one of the individual's traits has been proved to play an essential role on mental health. Yet the correlation between mindfulness and masculinity has barely been examined, and whether mindfulness could serve as a key mediator to explain the protective effect masculinity bringing to mental health for gay men remains unknown. To test this hypothesis, we recruited 210 gay men in China to conduct online questionnaires containing scales of FFMQ, BSRI, DASS-21 and demographic features. Based on mediation analysis, we found among gay men, mindfulness significantly mediates the negative relationship between masculinity and stress (SIE (standardized indirect effect) = -.20, 95% CI [-.28 -.11]), anxiety (SIE = -.17, 95% CI [-.26 -.09]) and depression (SIE = -.20, 95% CI [-.29 -.11]). Furthermore, by decomposing sub-dimensions of mindfulness, we found both "describing" and "acting with awareness" exhibit significant mediation effects between masculinity and mental distress. We further found "being analytical", one key sub-dimension of masculinity, positively correlates with mindful describing (r = .369, p < .001). Our results indicate that trait mindfulness serves as a core mediator between masculinity and mental health, the key trait in masculinity (being analytical) closely connects with the essential element of mindfulness (describing) and low in masculinity might undermine gay men's abilities of acting with awareness (staying focused). Our findings may also shed light on developing gay men-aimed mindfulness-based clinical interventions.

5.
Front Pharmacol ; 15: 1450704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139642

RESUMO

The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.

6.
Adv Mater ; : e2406653, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113338

RESUMO

The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.

7.
Mater Horiz ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082084

RESUMO

Preservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function. PPP NPs have been identified to improve survival rates in models of mitochondrial depletion through enhancement of cardiomyocyte proliferation and the reduction of DNA damage. Moreover, PPP NPs can effectively inhibit the production of reactive oxygen species and inflammatory mediators in lipopolysaccharide (LPS)-induced mitochondrial damage. Utilizing human engineered heart tissue and mice models, PPP NPs were found to significantly improve contractile function and alleviate inflammation activities after LPS treatment. Mechanically, PPP NPs regulated inflammatory responses via a m6A dependent manner, as determined using RNA-seq and MeRIP-seq analyses. Collectively, these insights underscore the potential of PPP NPs as a novel therapeutic approach for mitochondrial dysfunction.

8.
J Agric Food Chem ; 72(31): 17649-17657, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047266

RESUMO

Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.


Assuntos
Fungicidas Industriais , Doenças das Plantas , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Indóis/química , Indóis/farmacologia , Cucumis sativus/química , Cucumis sativus/microbiologia , Oomicetos/efeitos dos fármacos , Solanum tuberosum/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Descoberta de Drogas , Hidrocarbonetos Fluorados , Pirazóis
9.
Sci Rep ; 14(1): 15218, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956343

RESUMO

The optimized layout of electric vehicle (EV) chargers is not only crucial for users' convenience but also a key element in urban sustainable development, energy transition, and the promotion of new energy vehicles. In order to provide a basis for the problem of localization and capacity determination of chargers and compare the merits of several mainstream algorithms, this paper first establishes an optimization model with the objective of minimizing the total investment cost of all the chargers and the constraint of meeting the charging demands of all electric vehicles. Optimizations were performed using genetic algorithm (GA), surrogate optimization algorithm (SOA), and mixed integer linear programming (MILP) algorithm, respectively. In the case of using MILP, the original nonlinear optimization problem was transformed into a linear problem. In the planning of city-level EV chargers, MILP took 14182.57 s to calculate the minimum cost of 34.62 million yuan. After retaining only 10% of the original data amount, SOA took 87651.34 s to calculate the minimum cost of 3.01 million yuan. The results indicate that GA is prone to falling into local optima and is not suitable for large-scale optimization problems. SOA, on the other hand, requires significant memory consumption, so the issue of memory usage needs to be carefully considered when using it directly. Although MILP is only applicable to linear programming problems, it has the advantages of lower memory usage and higher reliability if the problem can be transformed into a linear one.

10.
Environ Sci Pollut Res Int ; 31(31): 44289-44307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949731

RESUMO

To maximize the efficiency of biomass waste utilization and waste management, a novel acid-modified magnetic biomass spent coffee grounds (NiFe2O4/SCG) was obtained by pyrolysis at 473 K and co-precipitation methods and employed to eliminate bivalent mercury (Hg(II)) in water bodies. The prepared NiFe2O4/SCG adsorbent exhibits remarkable magnetism with a strength of 45.78 emu/g and can easily be separated from water via a magnetic force. The adsorption of Hg(II) over the NiFe2O4/SCG has an optimal conditions of pH = 8, T = 39 ℃, and dosage of 0.055 g/L, and the maximal adsorption capacity for Hg(II) is 167.44 mg/g via Response Surface Methodology optimization. The removal of Hg(II) over NiFe2O4/SCG primarily involves ion exchange, electrostatic attraction, and chelation; conforms to the pseudo-second-order kinetic and Langmuir models; and is an endothermic reaction. Additionally, the magnetic biomass NiFe2O4/SCG has good regeneration capability and stability. The application research reveal that inorganic salt ions, nitrogen fertilizer urea, humus, and other contaminants in different actual water bodies (river water, lake water, and the effluent of sewage treatment plant) have little effect on the adsorption of Hg(II) over the NiFe2O4/SCG. The prepared adsorbent NiFe2O4/SCG has practical application value for removing Hg(II) from water bodies.


Assuntos
Biomassa , Café , Mercúrio , Poluentes Químicos da Água , Café/química , Mercúrio/química , Poluentes Químicos da Água/química , Adsorção , Cinética
11.
Adv Sci (Weinh) ; : e2405077, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959393

RESUMO

Energy and environmental issues have increasingly garnered significant attention for sustainable development. Flexible and shape-stable phase change materials display great potential in regulation of environmental temperature for energy saving and human comfort. Here, inspired by the water absorption behavior of salt-tolerant animals and plants in salinity environment and the Hofmeister theory, highly stable phase change salogels (PCSGs) are fabricated through in situ polymerization of hydrophilic monomers in molten salt hydrates, which can serve multiple functions including thermal management patches, smart windows, and ice blocking coatings. The gelation principles of the polymer in high ion concentration solution are explored through the density functional theory simulation and verified the feasibility of four types of salt hydrates. The high concentration chaotropic ions strongly interacted with polymer chains and promoted the gelation at low polymer concentrations which derive highly-stable and ultra-moisturizing PCSGs with high latent heat (> 200 J g-1). The synergistic adhesion and transparency switching abilities accompanied with phase transition enable their smart thermal management. The study resolves the melting leakage and thermal cycling stability of salt hydrates, and open an avenue to fabricate flexible PCM of low cost, high latent heat, and long-term durability for energy-saving, ice-blocking, and thermal management.

12.
Sci Rep ; 14(1): 13652, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871809

RESUMO

Simple and practical tools for screening high-risk new-onset diabetes after percutaneous coronary intervention (PCI) (NODAP) are urgently needed to improve post-PCI prognosis. We aimed to evaluate the risk factors for NODAP and develop an online prediction tool using conventional variables based on a multicenter database. China evidence-based Chinese medicine database consisted of 249, 987 patients from 4 hospitals in mainland China. Patients ≥ 18 years with implanted coronary stents for acute coronary syndromes and did not have diabetes before PCI were enrolled in this study. According to the occurrence of new-onset diabetes mellitus after PCI, the patients were divided into NODAP and Non-NODAP. After least absolute shrinkage and selection operator regression and logistic regression, the model features were selected and then the nomogram was developed and plotted. Model performance was evaluated by the receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test and decision curve analysis. The nomogram was also externally validated at a different hospital. Subsequently, we developed an online visualization tool and a corresponding risk stratification system to predict the risk of developing NODAP after PCI based on the model. A total of 2698 patients after PCI (1255 NODAP and 1443 non-NODAP) were included in the final analysis based on the multicenter database. Five predictors were identified after screening: fasting plasma glucose, low-density lipoprotein cholesterol, hypertension, family history of diabetes and use of diuretics. And then we developed a web-based nomogram ( https://mr.cscps.com.cn/wscoringtool/index.html ) incorporating the above conventional factors for predicting patients at high risk for NODAP. The nomogram showed good discrimination, calibration and clinical utility and could accurately stratify patients into different NODAP risks. We developed a simple and practical web-based nomogram based on multicenter database to screen for NODAP risk, which can assist clinicians in accurately identifying patients at high risk of NODAP and developing post-PCI management strategies to improved patient prognosis.


Assuntos
Diabetes Mellitus , Nomogramas , Intervenção Coronária Percutânea , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Diabetes Mellitus/epidemiologia , Internet , China/epidemiologia , Medição de Risco/métodos , Prognóstico , Síndrome Coronariana Aguda/diagnóstico , Curva ROC
13.
J Colloid Interface Sci ; 674: 437-444, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941936

RESUMO

Self-assembly of nanoclusters (NCs) is an effective synthetic method for preparing functionalized nanomaterials. However, the assembly process and mechanisms in solutions still remain ambiguous owing to the limited strategies to monitor intermediate assembled states. Herein, the self-assembly process of amphiphilic molecule 4POSS-DL-POM (consisting of four polyhedral oligomeric silsesquioxanes, a dendritic linker, and one polyoxometalate) by evaporation of acetone in a mixed acetone/n-decane solution is monitored by time-resolved synchrotron small-angle X-ray scattering (SAXS). Scattering data assessments, including Kratky analysis, pair distance distribution function, and model fitting, track the self-assembly process of 4POSS-DL-POM from a fractal network to compact NCs, then to core-shell NCs, and finally to superlattice structure. The calculated average aggregation number of a core-shell NC is 11 according to the parameters obtained from core-shell model fitting, in agreement with electron microscopy. The fundamental understanding of the self-assembly dynamics from heterocluster into NCs provides principles to control building block shape and guide target aggregation, which can further promote the design and construction of highly ordered cluster-assembled functional nanomaterials.

14.
Mater Horiz ; 11(16): 3721-3746, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-38894682

RESUMO

Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Espécies Reativas de Oxigênio , Hidrogéis/química , Espécies Reativas de Oxigênio/metabolismo , Humanos , Materiais Biocompatíveis/química , Estresse Oxidativo/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos
16.
Catal Sci Technol ; 14(9): 2390-2399, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38721397

RESUMO

Transaminase enzymes are well established biocatalysts that are used in chemical synthesis due to their beneficial sustainability profile, regio- and stereoselectivity and substrate specificity. Here, the use of a wild-type Chromobacterium violaceum transaminase (CvTAm) in enzyme cascades revealed the formation of a novel hydroxystyryl pyridine product. Subsequent studies established it was a transaminase mediated reaction where it was exhibiting apparent aldolase reactivity. This promiscuous enzyme reaction mechanism was then explored using other wild-type transaminases and via the formation of CvTAm mutants. Application of one pot multi-step enzyme cascades was subsequently developed to produce a range of hydroxystyryl pyridines.

17.
Phytomedicine ; 130: 155737, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38772183

RESUMO

BACKGROUND: Caenorhabditis elegans (C. elegans) has been recognized for being a useful model organism in small-molecule drug screens and drug efficacy investigation. However, there remain bottlenecks in evaluating such processes as drug uptake and distribution due to a lack of appropriate chemical tools. PURPOSE: This study aims to prepare fluorescence-labeled leonurine as an example to monitor drug uptake and distribution of small molecule in C. elegans and living cells. METHODS: FITC-conjugated leonurine (leonurine-P) was synthesized and characterized by LC/MS, NMR, UV absorption and fluorescence intensity. Leonurine-P was used to stain C. elegans and various mammalian cell lines. Different concentrations of leonurine were tested in conjunction with a competing parent molecule to determine whether leonurine-P and leonurine shared the same biological targets. Drug distribution was analyzed by imaging. Fluorometry in microplates and flow cytometry were performed for quantitative measurements of drug uptake. RESULTS: The UV absorption peak of leonurine-P was 490∼495 nm and emission peak was 520 nm. Leonurine-P specifically bound to endogenous protein targets in C. elegans and mammalian cells, which was competitively blocked by leonurine. The highest enrichment levels of leonurine-P were observed around 72 h following exposure in C. elegans. Leonurine-P can be used in a variety of cells to observe drug distribution dynamics. Flow cytometry of stained cells can be facilely carried out to quantitatively detect probe signals. CONCLUSIONS: The strategy of fluorescein-labeled drugs reported herein allows quantification of drug enrichment and visualization of drug distribution, thus illustrates a convenient approach to study phytodrugs in pharmacological contexts.


Assuntos
Caenorhabditis elegans , Ácido Gálico , Animais , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacocinética , Ácido Gálico/metabolismo , Humanos , Fluoresceína-5-Isotiocianato/análogos & derivados , Citometria de Fluxo , Fluorescência , Corantes Fluorescentes
18.
Front Oncol ; 14: 1365255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725635

RESUMO

Objective: The optimal first-line immunotherapy regimen for patients with PD-L1 expression ≥50% in squamous non-small cell lung cancer (Sq-NSCLC) remains uncertain. This study utilized net-work meta-analysis (NMA) to indirectly compare the efficacy of various first-line immuno-therapy regimens in this patient subset. Methods: Systematic searches were conducted across PubMed, the Cochrane Library, Web of Science, and Embase databases for randomized controlled trials reporting overall survival (OS) and progression-free survival (PFS) outcomes. The search spanned from database inception to November 3, 2023. Bayesian network meta-analysis was employed for a comprehen-sive analysis. To ensure scientific rigor and transparency, this study is registered in the Interna-tional Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42022349712. Results: The NMA encompassed 9 randomized controlled trials (RCTs), involving 2170 patients and investigating 9 distinct immunotherapy regimens. For OS, the combination of camrelizumab and chemotherapy demonstrated the highest probability (36.68%) of efficacy, fol-lowed by cemiplimab (33.86%) and atezolizumab plus chemotherapy (23.87%). Regarding PFS, the camrelizumab and chemotherapy combination had the highest probability (39.70%) of efficacy, followed by pembrolizumab (22.88%) and pembrolizumab plus chemotherapy (17.69%). Compared to chemotherapy, first-line treatment with immune checkpoint inhibitors (ICIs) in Sq-NSCLC pa-tients exhibited significant improvements in OS (HR 0.59, 95% CI 0.47-0.75) and PFS (HR 0.44, 95% CI 0.37-0.52). Conclusion: This study suggests that, for Sq-NSCLC patients with PD-L1 expression ≥50%, the first-line immunotherapy regimen of camrelizumab plus chemotherapy provides superior OS and PFS outcomes. Furthermore, ICIs demonstrate enhanced efficacy compared to chemotherapy in this patient population. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD 42022349712.

19.
Adv Sci (Weinh) ; 11(26): e2400349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713747

RESUMO

Critical-size bone defects pose a formidable challenge in clinical treatment, prompting extensive research efforts to address this problem. In this study, an inorganic-organic multifunctional composite hydrogel denoted as PLG-g-TA/VEGF/Sr-BGNPs is developed, engineered for the synergistic management of bone defects. The composite hydrogel demonstrated the capacity for mineralization, hydroxyapatite formation, and gradual release of essential functional ions and vascular endothelial growth factor (VEGF) and also maintained an alkaline microenvironment. The composite hydrogel promoted the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), as indicated by increased expression of osteogenesis-related genes and proteins in vitro. Moreover, the composite hydrogel significantly enhanced the tube-forming capability of human umbilical vein endothelial cells (HUVECs) and effectively inhibited the process of osteoblastic differentiation of nuclear factor kappa-B ligand (RANKL)-induced Raw264.7 cells and osteoclast bone resorption. After the implantation of the composite hydrogel into rat cranial bone defects, the expression of osteogenic and angiogenic biomarkers increased, substantiating its efficacy in promoting bone defect repair in vivo. The commendable attributes of the multifunctional composite hydrogel underscore its pivotal role in expediting hydrogel-associated bone growth and repairing critical bone defects, positioning it as a promising adjuvant therapy candidate for large-segment bone defects.


Assuntos
Regeneração Óssea , Hidrogéis , Osteogênese , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteogênese/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana , Ratos Sprague-Dawley , Vidro/química , Modelos Animais de Doenças , Silicatos/química , Silicatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Masculino
20.
ACS Appl Mater Interfaces ; 16(15): 18855-18866, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38577763

RESUMO

Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA