RESUMO
The environmentally friendly elements composed of high bandgap pure sulfide Cu2ZnSnS4 (CZTS) semiconductor has broad prospects for building integrated photovoltaic, double-sided, and semi-transparent solar cells when fabricated on transparent substrates. The key issues limiting the performance of CZTS solar cells are poor absorber quality and unfavorable band energy alignment causing serious charge carrier recombination. Here, thefabrication of CZTS solar cells are reported on fluorine-doped tin oxide (FTO) substrates from dimethyl sulfoxide solution and the effects of the Cd and Ag alloying on device performance. Characterizations show that Cd alloying greatly decreases defect concentration and converts Cliff-type band alignment to favorable Spike-type, leading to greatly improved current density. Further, Ag alloying eliminates near-horizontal grain boundaries and passivates defects in both bulk and heterojunction interface, resulting in a champion device with a power conversion efficiency of 10.3%, the highest efficiency pure sulfide CZTS solar cell on FTO substrate. The results demonstrate the great application potential of pure sulfide kesterite solar cells.
RESUMO
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Assuntos
Dor Crônica , Terapia Genética , Manejo da Dor , Humanos , Dor Crônica/terapia , Dor Crônica/genética , Terapia Genética/métodos , Manejo da Dor/métodos , Animais , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/genética , Optogenética/métodos , Células Receptoras Sensoriais/metabolismo , RNA Interferente Pequeno/genéticaAssuntos
Mutação , Miopatias Congênitas Estruturais , Humanos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Mutação/genética , Masculino , Feminino , Músculo Esquelético/patologia , Proteínas Musculares/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adulto , Proteínas de Homeodomínio/genéticaRESUMO
OBJECTIVE: The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS: Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3â¯% sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS: GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION: The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Assuntos
Animais Recém-Nascidos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Feminino , Masculino , Ratos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/tratamento farmacológico , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-ret , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
The combination of photodynamic therapy (PDT)-immunotherapy has brought much hope for cancer patients. However, the hypoxia tumor microenvironment (TME) can regulate tumor angiogenesis and inhibit immune response, thus limiting the therapeutic effects. In this paper, engineered cyanobacteria-M2-like tumor-associated macrophages (TAMs) targeting peptide modified Fe3O4 nanoparticles hybrid system (ECyano@Fe3O4-M2pep) was constructed for alleviating hypoxia and relieving immune suppression to achieve synergistic cancer PDT-immunotherapy. With the irradiation of red laser, oxygen was produced by the photosynthesis of ECyano to alleviate the hypoxia TME. Then, ECyano could secret 5-aminolevulinic acid (5-ALA) under the induction of theophylline for controllable PDT. In the process of PDT, the disulfide bond between ECyano and Fe3O4-M2pep was broken in response to reactive oxygen species (ROS), and then Fe3O4-M2pep was released to target M2-like TAMs, corresponding by the polarization of M2-like TAMs to M1-like TAMs for the killing of tumor cells. Compared with other groups, ECyano@Fe3O4-M2pep + theophylline + laser (ECyano@Fe3O4-M2pep + T + L) group displayed the lowest tumor volume (159.3 mm3) and the highest M1/M2 ratio (1.25- fold). We believe that this hybrid system will offer a promising way for the biomedical application of bacterial therapy.
RESUMO
Background: Propofol and midazolam are commonly used sedative drugs in mechanically ventilated patients in the Intensive Care Unit (ICU). However, there is still a lack of relevant studies exploring the influence of midazolam and propofol on the prognosis of patients with Sepsis-associated Acute Kidney Injury (S-AKI). Patients and methods: A statistical analysis was conducted on 3,745 patients with S-AKI in the Medical Information Mart for Intensive Care IV database. The patients' baseline characteristics were grouped based on the use of either propofol or midazolam as sedatives. Cox proportional hazards models, logistic regression models, and subgroup analyses were used to compare the effects of propofol and midazolam on the short-term prognosis of S-AKI patients, including 30-day mortality, ICU mortality, and duration of mechanical ventilation. Results: In the statistical analysis, a total of 3,745 patients were included, with 649 patients using midazolam and 3,096 patients using propofol. In terms of the 30-day mortality, compared to patients using midazolam, S-AKI patients using propofol had a lower ICU mortality (hazard ratio = 0.62, 95% confidence interval: 0.52-0.74, p < 0.001), lower 30-day mortality (hazard ratio = 0.56, 95% confidence interval: 0.47-0.67, p < 0.001), and shorter mechanical ventilation time (odds ratio = 0.72, 95% confidence interval: 0.59-0.88, p < 0.001). Kaplan-Meier curves showed lower survival probabilities in the midazolam group (p < 0.001). Subgroup analyses showed that propofol was strongly protective of short-term prognosis in older, male, smaller SOFA score CCI score, no heart failure, and comorbid chronic kidney disease patients with S-AKI. Conclusion: Compared to midazolam, propofol was considered a protective factor for short-term mortality risk and ICU mortality risk in S-AKI patients. Additionally, S-AKI patients using propofol had a lower risk of requiring prolonged mechanical ventilation. Overall, propofol may be more beneficial for the short-term prognosis of S-AKI patients compared to midazolam.
RESUMO
Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.
Assuntos
Materiais Biocompatíveis , Microalgas , Materiais Biocompatíveis/química , Humanos , AnimaisRESUMO
Microneedle array patches (MAPs) are extensively studied for transdermal drug delivery. Additive manufacturing enables precise control over MAP customization and rapid fabrication. However, the scope of 3D-printable, bioresorbable materials is limited. Dexamethasone (DXM) is widely used to manage inflammation and pain, but its application is limited by systemic side effects. Thus, it is crucial to achieve high local drug concentrations while maintaining low serum levels. Here, poly(propylene fumarate-co-propylene succinate) oligomers are fabricated into DXM-loaded, bioresorbable MAPs via continuous liquid interface production 3D printing. Thiol-ene click chemistry yields MAPs with tailorable mechanical and degradation properties. DXM-loaded MAPs exhibit controlled elution of drug in vitro. Transdermal application of DXM-loaded MAPs in a murine tibial fracture model leads to substantial relief of postoperative pain. Pharmacokinetic analysis shows that MAP administration is able to control pain at a significantly lower dose than intravenous administration. This work expands the material properties of 3D-printed poly(propylene fumarate-co-propylene succinate) copolyesters and their use in drug delivery applications.
RESUMO
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Assuntos
Aterosclerose , Materiais Biomiméticos , Nanopartículas , Humanos , Nanopartículas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Aterosclerose/diagnóstico , Animais , BiomiméticaRESUMO
Somatic mutation phasing informs our understanding of cancer-related events, like driver mutations. We generated linked-read whole genome sequencing data for 23 samples across disease stages from 14 multiple myeloma (MM) patients and systematically assigned somatic mutations to haplotypes using linked-reads. Here, we report the reconstructed cancer haplotypes and phase blocks from several MM samples and show how phase block length can be extended by integrating samples from the same individual. We also uncover phasing information in genes frequently mutated in MM, including DIS3, HIST1H1E, KRAS, NRAS, and TP53, phasing 79.4% of 20,705 high-confidence somatic mutations. In some cases, this enabled us to interpret clonal evolution models at higher resolution using pairs of phased somatic mutations. For example, our analysis of one patient suggested that two NRAS hotspot mutations occurred on the same haplotype but were independent events in different subclones. Given sufficient tumor purity and data quality, our framework illustrates how haplotype-aware analysis of somatic mutations in cancer can be beneficial for some cancer cases.
RESUMO
There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.
Assuntos
Antioxidantes , Estabilidade de Medicamentos , Permeabilidade , Álcool Feniletílico , Absorção Cutânea , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacocinética , Álcool Feniletílico/administração & dosagem , Animais , Suínos , Absorção Cutânea/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Pele/metabolismo , Hidrogéis/química , Administração Cutânea , Porco Miniatura , Creme para a Pele/química , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão , Ácido Ascórbico/químicaRESUMO
RATIONALE: Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare low-grade malignant soft tissue sarcoma that primarily affects the distal extremities in adults, with the highest incidence in patients in their 40s and 50s. It has a high local recurrence rate and a low metastasis rate. Although MIFSs have been documented in other sites, an MIFS in the liver is highly unusual. Herein, we present a case of a patient with hepatic MIFS. PATIENT CONCERNS: The patient was a 58-year-old Chinese man with abdominal pain as the primary symptom. Abdominal computed tomography and magnetic resonance imaging revealed a mass in the right posterior lobe of the liver. The patient underwent surgical excision, and the excised specimen was identified as MIFS. Three years later, the patient returned to our hospital for abdominal pain. Computed tomography and magnetic resonance imaging revealed a mass in liver segments 2/3/4. DIAGNOSIS: Postoperative pathological examination of the tumor revealed the recurrence of MIFS. INTERVENTIONS: The patient underwent surgical resection of the MIFS. OUTCOMES: The patient received multiple pirarubicin-based chemotherapy treatments and an ALK inhibitor (anlotinib) within 6 months after surgery, but the tumor recurred. LESSONS: MIFS can not only occur in the proximal limbs, trunk, head, and neck but can also affect the abdominal organs. Surgical resection remains the primary treatment option for MIFS in the absence of any contraindications. Because the recurrence rate of MIFS is high, meticulous long-term monitoring is required.
Assuntos
Fibrossarcoma , Neoplasias Hepáticas , Humanos , Pessoa de Meia-Idade , Masculino , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico , Fibrossarcoma/cirurgia , Fibrossarcoma/diagnóstico , Fibrossarcoma/patologia , Tomografia Computadorizada por Raios X , Recidiva Local de Neoplasia/cirurgia , Imageamento por Ressonância Magnética , Fígado/patologia , Fígado/diagnóstico por imagemRESUMO
Although genomic anomalies in glioblastoma (GBM) have been well studied for over a decade, its 5-year survival rate remains lower than 5%. We seek to expand the molecular landscape of high-grade glioma, composed of IDH-wildtype GBM and IDH-mutant grade 4 astrocytoma, by integrating proteomic, metabolomic, lipidomic, and post-translational modifications (PTMs) with genomic and transcriptomic measurements to uncover multi-scale regulatory interactions governing tumor development and evolution. Applying 14 proteogenomic and metabolomic platforms to 228 tumors (212 GBM and 16 grade 4 IDH-mutant astrocytoma), including 28 at recurrence, plus 18 normal brain samples and 14 brain metastases as comparators, reveals heterogeneous upstream alterations converging on common downstream events at the proteomic and metabolomic levels and changes in protein-protein interactions and glycosylation site occupancy at recurrence. Recurrent genetic alterations and phosphorylation events on PTPN11 map to important regulatory domains in three dimensions, suggesting a central role for PTPN11 signaling across high-grade gliomas.
Assuntos
Neoplasias Encefálicas , Glioma , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Mutação , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Fosforilação , Gradação de Tumores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismoRESUMO
Cation substitution is an effective strategy to regulate the defects/electronic properties of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) absorbers and improve the device photovoltaic performance. Here, we report Ge alloying kesterite Cu2Zn(Sn,Ge)(S,Se)4 (CZTGSSe) via a solution approach. The results demonstrate that the same chemical reaction of Ge4+ to Sn4+ ensures homogeneous Ge incorporation in the whole range of concentrations (from 0 to unit). Ge alloying promotes grain growth and linearly enlarges the absorber band gap by solely raising the conduction band minimum, which maintains a "spike" conduction band offset at the heterojunction interface until 15% alloying concentration and thus facilitates effective charge carrier collection. A promising efficiency of 11.57% has been achieved at 15% Ge alloying concentration with a significant enhancement in open-circuit voltage and fill factor. By further 10% Ag alloying to improve the absorber film morphology, a champion device with an efficiency of 12.25% has been achieved without an antireflective coating. This result emphasizes the feasibility of achieving homogeneous and controllable Ge alloying of kesterite semiconductors through the solution method, paving the way for further improvement and optimization of device performance.
RESUMO
The pollution caused by heavy metals (HMs) represents a global concern due to their serious environmental threat. Photosynthetic cyanobacteria have a natural niche and the ability to remediate HMs such as cadmium. However, their practical application is hindered by a low tolerance to HMs and issues related to recycling. In response to these challenges, this study focuses on the development and evaluation of engineered cyanobacteria-based living materials for HMs bioremediation. Genes encoding phytochelatins (PCSs) and metallothioneins (MTs) were introduced into the model cyanobacterium Synechocystis sp. PCC 6803, creating PM/6803. The strain exhibited improved tolerance to multiple HMs and effectively removed a combination of Cd2+, Zn2+, and Cu2+. Using Cd2+ as a representative, PM/6803 achieved a bioremediation rate of approximately 21 µg of Cd2+/OD750 under the given test conditions. To facilitate its controllable application, PM/6803 was encapsulated using sodium alginate-based hydrogels (PM/6803@SA) to create "living materials" with different shapes. This system was feasible, biocompatible, and effective for removing Cd2+ under simulated conditions of zebrafish and mice models. Briefly, in vitro application of PM/6803@SA efficiently rescued zebrafish from polluted water containing Cd2+, while in vivo use of PM/6803@SA significantly decreased the Cd2+ content in mice bodies and restored their active behavior. The study offers feasible strategies for HMs bioremediation using the interesting biomaterials of engineered cyanobacteria both in vitro and in vivo.
Assuntos
Biodegradação Ambiental , Metais Pesados , Peixe-Zebra , Animais , Metais Pesados/metabolismo , Metais Pesados/química , Camundongos , Synechocystis/metabolismo , Synechocystis/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Hidrogéis/química , Fitoquelatinas/metabolismo , Cádmio/metabolismo , Cádmio/química , Cianobactérias/metabolismo , Cianobactérias/genética , Alginatos/química , Alginatos/metabolismoRESUMO
Hypertrophic scarring (HS) is a pathological condition characterized by excessive fibrosis and inflammation, resulting in excessive extracellular matrix formation in the skin. MIR155HG, a long non-coding RNA, is abnormally upregulated in fibrotic tissues; however, its underlying mechanism is poorly understood. Using single-cell sequencing data, we analyzed connective tissue growth factor (CTGF) expression in various cell types in HS and normal skin tissues and MIR155HG expression in clinical samples. To investigate the mechanism of fibrosis, an in vitro model using CTGF-treated hypertrophic scar fibroblasts (HSFBs) was established and qRT-PCR, western blotting and ELISA assays were performed to investigate the expression of interleukin (IL)-1ß, IL-6, and mesenchymal markers α-smooth muscle actin (α-SMA). CTGF stimulates MIR155HG level through phosphorylated STAT3 binding to the MIR155HG promoter. We analyzed the methylation of MIR155HG, assessed the levels of miR-155-5p/-3p in CTGF-treated HSFBs and identified differentially expressed genes among HS and NS samples using the Gene Expression Omnibus RNA sequencing data. The binding between miR-155-5p/-3p and AZGP1 was confirmed using a dual-luciferase assay and inflammatory cytokine production and α-SMA expression were investigated in rescue experiments. The findings revealed that CTGF elevated inflammatory cytokine production, α-SMA and MIR155HG expression in HSFBs. MIR155HG is upregulated in HS tissues due to low DNA methylation. Mechanistically, miR-155-5p/-3p was directly bound to MIR155HG 3'UTR. MIR155HG silencing inhibited cytokine production and α-SMA expression by repressing the generation of miR-155-5p/-3p in CTGF-treated HSFBs. Bioinformatics analysis and luciferase reporter assays revealed that miR-155-5p/-3p targets AZGP1. In addition, transfection with plasmids carrying AZGP1 cDNA significantly inhibited the signaling activity of miR-155-5p/-3 p-overexpressing HSFBs. Our findings highlight the importance of the MIR155HG/miR-155/AZGP1 axis in regulating cytokine production and α-SMA in HS.
Assuntos
Actinas , Cicatriz Hipertrófica , Fator de Crescimento do Tecido Conjuntivo , Citocinas , Fibroblastos , MicroRNAs , Regulação para Cima , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/genética , Actinas/metabolismo , Citocinas/metabolismo , Regulação para Cima/efeitos dos fármacos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Masculino , Feminino , Transdução de SinaisRESUMO
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão GênicaRESUMO
One-dimensional metal halide perovskites are among the most promising candidate materials for optoelectronic devices. However, the heterogeneity and fast degradation of perovskite nanowires (NWs) and nanorods (NRs) synthesized using conventional approaches impose a bottleneck for their optoelectronic applications. Recently, all-inorganic perovskite CsPbBr3 NRs with tailored dimensions, crafted using an amphiphilic bottlebrush-like block copolymer (BBCP) as nanoreactors, have demonstrated enhanced stabilities. Herein, we report the electronic investigation into these template-grown CsPbBr3 NRs using dielectric force microscopy (DFM), a contactless, nondestructive imaging technique. All freshly prepared CsPbBr3 NRs exhibited ambipolar behaviors for up to two months after sample synthesis. A transition from ambipolar to p-type behaviors occurred after two months, and nearly all NRs completed the transition within two weeks. Moreover, template-grown CsPbBr3 NRs displayed better nanoscale electronic homogeneity compared to their conventional counterparts. The improved electronic uniformity and nanoscale homogeneity place the template-grown CsPbBr3 NRs in a unique advantageous position for optoelectronic applications.
RESUMO
Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1⯵g·kg-1·min-1 for 60â¯min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48â¯h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.