Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Imaging ; 10(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921612

RESUMO

The automatic segmentation of cardiac computed tomography (CT) and magnetic resonance imaging (MRI) plays a pivotal role in the prevention and treatment of cardiovascular diseases. In this study, we propose an efficient network based on the multi-scale, multi-head self-attention (MSMHSA) mechanism. The incorporation of this mechanism enables us to achieve larger receptive fields, facilitating the accurate segmentation of whole heart structures in both CT and MRI images. Within this network, features extracted from the shallow feature extraction network undergo a MHSA mechanism that closely aligns with human vision, resulting in the extraction of contextual semantic information more comprehensively and accurately. To improve the precision of cardiac substructure segmentation across varying sizes, our proposed method introduces three MHSA networks at distinct scales. This approach allows for fine-tuning the accuracy of micro-object segmentation by adapting the size of the segmented images. The efficacy of our method is rigorously validated on the Multi-Modality Whole Heart Segmentation (MM-WHS) Challenge 2017 dataset, demonstrating competitive results and the accurate segmentation of seven cardiac substructures in both cardiac CT and MRI images. Through comparative experiments with advanced transformer-based models, our study provides compelling evidence that despite the remarkable achievements of transformer-based models, the fusion of CNN models and self-attention remains a simple yet highly effective approach for dual-modality whole heart segmentation.

2.
Adv Sci (Weinh) ; : e2404253, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864316

RESUMO

It is an increasingly mature application solution that triboelectric nanogenerator (TENG) supplies power to electronic devices through its power management system (PMS). However, the previous PMS is able to manage a limited voltage magnitude and the energy storage elements are limited to capacitors. This work proposes an ultrahigh voltage PMS (UV-PMS) to realize the charging of commercial lithium cells (LCs) by TENG. The design of UV-PMS enables energy management of TENGs with ultrahigh open-circuit voltages up to 3500 V and boosts the peak charging current from 30.9 µA to 2.77 mA, an increase of 89.64 times. With the introduction of UV-PMS, the effective charging capacity of LC charged by a TENG at a working frequency of 1.5 Hz for 1 h comes to 429.7 µAh, making a 75.3 times enhancement compared to charging by TENG directly. The maximum charging power comes to 1.56 mW. The energy storage efficiency is above 97% and the overall charge efficiency can be maintained at 81.2%. This work provides a reliable strategy for TENG to store energy in LC, and has promising applications in energy storage, LC's life, and self-powered systems.

3.
Eur Spine J ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853178

RESUMO

PURPOSE: Subsequent vertebral fracture (SVF) is a severe advent event of percutaneous vertebral augmentation (PVA). However, the incidence and risk factors of SVF following PVA for OVCF in postmenopausal women remain unclear. This research aims to investigative the incidence and risk factors of SVF after PVA for OVCF in postmenopausal women. METHODS: Women who underwent initial PVA for OVCF between August 2019 and December 2021 were reviewed. Univariate logistic regression analysis was performed to identify possible risk factors of SVF, and independent risk factors were determined by multivariate logistic regression. RESULTS: A total of 682 women after menopause were enrolled in the study. Of these women, 100 cases had an SVF after PVA, with the incidence of 14.66%. Univariate logistic regression analysis demonstrated that age (p = 0.001), body mass index (BMI) (p < 0.001), steroid use (p = 0.008), history of previous vertebral fracture (p < 0.001), multiple vertebral fracture (p = 0.033), postoperative wedge angle (p = 0.003), and HU value (p < 0.001) were significantly correlated with SVF following PVA. Furthermore, BMI (OR [95%CI] = 0.892 [0.825 - 0.965]; p = 0.004), steroid use (OR [95%CI] = 3.029 [1.211 - 7.574]; p = 0.018), history of previous vertebral fracture (OR [95%CI] = 1.898 [1.148 - 3.139]; p = 0.013), postoperative wedge angle (OR [95%CI] = 1.036 [1.004 - 1.070]; p = 0.028), and HU value (OR [95%CI] = 0.980 [0.971 - 0.990]; p < 0.001) were identified as independent risk factors of SVF after PVA by multivariate logistic regression analysis. CONCLUSIONS: The incidence of SVF following PVA for OVCF in postmenopausal women was 14.66%. BMI, steroid use, history of previous vertebral fracture, postoperative wedge angle, and HU value were independent risk factors of SVF after PVA for OVCF in postmenopausal women.

4.
ACS Appl Mater Interfaces ; 16(23): 30255-30263, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813772

RESUMO

Recently, discarded electronic products have caused serious environmental pollution and information security issues, which have attracted widespread attention. Here, a degradable tribotronic transistor (DTT) for self-destructing intelligent package e-labels has been developed, integrated by a triboelectric nanogenerator and a protonic field-effect transistor with sodium alginate as a dielectric layer. The triboelectric potential generated by external contact electrification is used as the gate voltage of the organic field-effect transistor, which regulates carrier transport through proton migration/accumulation. The DTT has successfully demonstrated its output characteristics with a high sensitivity of 0.336 mm-1 and a resolution of over 100 µm. Moreover, the DTT can be dissolved in water within 3 min and completely degraded in soil within 12 days, demonstrating its excellent degradation characteristics, which may contribute to environmental protection. Finally, an intelligent package e-label based on the modulation of the DTT is demonstrated, which can display information about the package by a human touch. The e-label will automatically fail due to the degradation of the DTT over time, achieving the purpose of information confidentiality. This work has not only presented a degradable tribotronic transistor for package e-labels but also exhibited bright prospects in military security, information hiding, logistics privacy, and personal affairs.

5.
J Cardiothorac Surg ; 19(1): 153, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532449

RESUMO

BACKGROUND: The Cabrol procedure has undergone various modifications and developments since its invention. However, there is a notable gap in the literature regarding meta-analyses assessing it. METHODS: A systematic review and meta-analysis was conducted to evaluate the effectiveness and long-term outcomes of the Cabrol procedure and its modifications. Pooling was conducted using random effects model. Outcome events were reported as linearized occurrence rates (percentage per patient-year) with 95% confidence intervals. RESULTS: A total of 14 studies involving 833 patients (mean age: 50.8 years; 68.0% male) were included in this meta-analysis. The pooled all-cause early mortality was 9.0% (66 patients), and the combined rate of reoperation due to bleeding was 4.9% (17 patients). During the average 4.4-year follow-up (3,727.3 patient-years), the annual occurrence rates (linearized) for complications were as follows: 3.63% (2.79-4.73) for late mortality, 0.64% (0.35-1.16) for aortic root reoperation, 0.57% (0.25-1.31) for hemorrhage events, 0.66% (0.16-2.74) for thromboembolism, 0.60% (0.29-1.26) for endocarditis, 2.32% (1.04-5.16) for major valve-related adverse events, and 0.58% (0.34-1.00) for Cabrol-related coronary graft complications. CONCLUSION: This systematic review provides evidence that the outcomes of the Cabrol procedure and its modifications are acceptable in terms of mortality, reoperation, anticoagulation, and valve-related complications, especially in Cabrol-related coronary graft complications. Notably, the majority of Cabrol procedures were performed in reoperations and complex cases. Furthermore, the design and anastomosis of the Dacron interposition graft for coronary reimplantation, considering natural anatomy and physiological hemodynamics, may promise future advancements in this field.


Assuntos
Cardiopatias , Próteses Valvulares Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Prótese Vascular , Valva Aórtica/cirurgia , Aorta/cirurgia , Reoperação , Cardiopatias/cirurgia
6.
Open Life Sci ; 19(1): 20220813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465336

RESUMO

This study aimed to clarify the role of pituitary tumor-transforming gene 1 (PTTG1) in proliferation, migration, invasion, and aerobic glycolysis of pancreatic cancer cells, and evaluate the potential of PTTG1 as a therapeutic target. PTTG1 expression in pancreatic cancers was analyzed using the GEPIA databank. In the Panc1 cell with the PTTG1 knockdown or Mia-PaCa2 cells with PTTG1 overexpression, the cell proliferation was evaluated using cell viability curves and colony formation, and wound heal assay and transwell assay were performed to evaluate the migration and invasion, respectively. Furthermore, a western blot was performed to evaluate the expressions of PTTG1, proliferating cell nuclear antigen, E-cadherin, N-cadherin, and c-myc. Meanwhile, the glucose uptake, extracellular acidification rates (ECAR), and oxygen consumption rates (OCR) were analyzed. Our results showed that PTTG1 expression is upregulated in pancreatic cancer, which promoted cell proliferation. Low PTTG1 contributed to higher disease-free survival and overall survival. In Panc1 cell, PTTG1 knockdown resulted in reduced cell viability and colony formation. The migration and invasion abilities of the cells were also reduced in Panc1 with PTTG1 knockdown. Correspondingly, PTTG1 knockdown decreased c-myc expression, glucose uptake, ECAR, and OCR in Panc1 cells. In Mia-PaCa2 cells, PTTG1 overexpression promoted cell proliferation, aerobic glycolysis, and translocation of ß-catenin to the nucleus by regulating c-myc. In conclusion, PTTG1 induces proliferation, migration, and invasion, and promotes aerobic glycolysis in pancreatic cancer cells via regulating c-myc, demonstrating the potential of PTTG1 as a therapeutic target.

7.
ISA Trans ; 146: 472-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311494

RESUMO

Holo-Hilbert spectral analysis (HHSA) has been demonstrated to be an effective instantaneous feature demodulation tool for revealing the coupling relationship between the frequency-modulated (FM) carriers and amplitude-modulated (AM) characteristics within nonlinear and non-stationary mechanical vibration signals. However, it is unable to acquire the time varying AM characteristics from the vibration signals of the equipment operates under variable speed conditions. To decode such signals, inspired by HHSA, a novel angle-time double-layer decomposition structure termed order-frequency HHSA (OFHHSA) is established to demodulate the fault information from the time varying vibration signals in this paper. The corresponding spectrogram, namely, order-frequency Holo-Hilbert spectrum (OFHHS) is acquired for describing the interaction relationship between time and angle domains. Besides, the order AM-marginal spectrum is derived from the OFHHS via integrating the carrier variable to exhibit the fault characteristic-related orders. Moreover, the differences between OFHHSA and angle-time cyclo-stationary framework-based order-frequency spectral correlation (OFSC) are analyzed for time varying machinery fault diagnosis. Finally, from the analyses of simulated and tested data of mechanical equipment, the OFHHSA method has avoided the limitations of the two OFSC estimators on periodic assumption and the maximum cut-off order, and the proposed method obtained a more accurate rate in fault identification and more robust ability of anti-noise.

8.
Acta Pharmacol Sin ; 45(5): 879-889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191914

RESUMO

MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.


Assuntos
Epigênese Genética , Humanos , Animais
9.
Cell Rep ; 42(12): 113468, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995178

RESUMO

The role of BACH1 in the process of vascular smooth muscle cell (VSMC) differentiation from human embryonic stem cells (hESCs) remains unknown. Here, we find that the loss of BACH1 in hESCs attenuates the expression of VSMC marker genes, whereas overexpression of BACH1 after mesoderm induction increases the expression of VSMC markers during in vitro hESC-VSMC differentiation. Mechanistically, BACH1 binds directly to coactivator-associated arginine methyltransferase 1 (CARM1) during in vitro hESC-VSMC differentiation, and this interaction is mediated by the BACH1 bZIP domain. BACH1 recruits CARM1 to VSMC marker gene promoters and promotes VSMC marker expression by increasing H3R17me2 modification, thus facilitating in vitro VSMC differentiation from hESCs after the mesoderm induction. The increased expression of VSMC marker genes by BACH1 overexpression is partially abolished by inhibition of CARM1 or the H3R17me2 inhibitor TBBD in hESC-derived cells. These findings highlight the critical role of BACH1 in hESC differentiation into VSMCs by CARM1-mediated methylation of H3R17.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Músculo Liso Vascular/metabolismo , Linhagem Celular , Diferenciação Celular/genética , Metilação , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
10.
Laterality ; 28(1): 32-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36859828

RESUMO

The golden snub-nosed monkey (Rhinopithecus roxellana) is a typical arboreal group-living Old World primate. While limb preference has been extensively studied in this species, limb preference consistency has not yet been explored. Here, based on 26 R. roxellana adults, we investigated whether individuals exhibit consistent motor biases in manual- (e.g., unimanual feeding and social grooming) and foot-related (e.g., bipedal locomotion) tasks and whether limb preference consistency is influenced by increased social interactions during social grooming. Results showed no consistency in the direction or strength of limb preference among tasks, except for lateral strength in handedness for unimanual feeding and footedness in the initiation of locomotion. Population-level foot preference was only found among right-handers. Marked lateral bias was found in unimanual feeding, indicating that it may be a sensitive behavioural measure for assessing manual preference, especially for provisioned populations. This study not only improves our understanding of the relationship between hand and foot preference in R. roxellana but also reveals potential differential hemispheric regulation of limb preference and the influence of increased social interaction on handedness consistency.


Assuntos
Presbytini , Animais , Asseio Animal , Lateralidade Funcional , Locomoção
11.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36864760

RESUMO

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cromatina , Músculo Liso Vascular , Neointima , Fenótipo , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/genética , Cromatina/metabolismo , Homeostase , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Placa Aterosclerótica
13.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501788

RESUMO

Advanced sensing, fault diagnosis, and structural health management are important parts of the maintenance strategy of modern industries [...].


Assuntos
Indústrias
14.
Sensors (Basel) ; 22(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36560370

RESUMO

Fault diagnosis and health condition monitoring have always been critical issues in the engineering research community [...].

15.
Dev Cell ; 57(22): 2533-2549.e7, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413948

RESUMO

Heart development is controlled by a complex transcriptional network composed of transcription factors and epigenetic regulators. Mutations in key developmental transcription factor MESP1 and chromatin factors, such as PRC1 and cohesin components, have been found in human congenital heart diseases (CHDs), although their functional mechanism during heart development remains elusive. Here, we find that MESP1 interacts with RING1A/RING1, the core component of PRC1. RING1A depletion impairs human cardiomyocyte differentiation, and cardiac abnormalities similar to those in patients with MESP1 mutations were observed in Ring1A knockout mice. Mechanistically, MESP1 associates with RING1A to activate cardiogenic genes through promoter-enhancer interactions regulated by cohesin and CTCF and histone acetylation mediated by p300. Importantly, CHD mutations of MESP1 significantly affect such mechanisms and impair target gene activation. Together, our results demonstrate the importance of MESP1-RING1A complex in heart development and provide insights into the pathogenic mechanisms of CHDs caused by mutations in MESP1, PRC1, and cohesin components.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cardiopatias Congênitas , Camundongos , Animais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Organogênese , Diferenciação Celular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cardiopatias Congênitas/genética , Camundongos Knockout
16.
Medicine (Baltimore) ; 101(46): e31544, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401370

RESUMO

BACKGROUND: High viscosity cement (HVC) and low viscosity cement (LVC) have been used to treat osteoporotic vertebral compression fractures (OVCFs). Our study was to assess the safety and efficacy of HVC and LVC in treating OVCFs. METHODS: We searched the electronic database for randomized controlled trials of HVC and LVC to treat OVCFs. Random-effects model was performed to pool the outcomes about operation time, visual analogue scale (VAS), bone cement injection volume, oswestry disability index (ODI), bone cement leakage and adjacent vertebral fractures. RESULTS: Twelve randomized trials were included in the meta-analysis. The 2 groups had similar changes in terms of bone cement injection volume, ODI and adjacent vertebral fractures. The HVC group showed shorter operation time and better VAS score improvement. The bone cement leakage rate of the HVC group was significantly better than LVC group (P < .00001).According to the location of bone cement leakage, in the leakages of the veins (P < .00001), the intervertebral disc (P < .00001), the paravertebral area (P = .003) and the intraspinal space (P = .03), the HVC group were significantly better than the LVC group. CONCLUSIONS: In terms of bone cement injection volume, ODI and adjacent vertebral fractures, the 2 group are equivalent. HVC had a shorter operation time, lower bone cement leakage rate and better VAS score improvement, compared with LVC.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Fraturas por Compressão/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Cimentos Ósseos/uso terapêutico , Viscosidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Materiais Dentários
17.
Front Surg ; 9: 998231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211293

RESUMO

Background: Calcified lumbar disc herniation (CLDH) is considered to be a special type of lumbar disc herniation (LDH). Percutaneous endoscopic interlaminar discectomy (PEID), with safety and efficacy, has been proved to be a minimally invasive surgery for LDH. However, there are few studies on PEID in the treatment of CLDH at the L5-S1 level. This study aimed to analyze the clinical efficacy of PEID for L5-S1 CLDH. Methods: From August 2016 to April 2020, we retrospectively analyzed 28 consecutive patients (17 males and 11 females) with L5-S1 CLDH treated with PEID at our institution. All the patients were monitored for more than 1 year postoperatively. The demographic characteristics, surgical results, and clinical outcomes estimated by the visual analog scale (VAS) for leg pain, the Oswestry disability index (ODI), and the modified MacNab criteria were collected. Results: All patients successfully underwent PEID. The mean operative time and intraoperative blood loss were 65.36 ± 5.26 min and 13.21 ± 4.35 ml, respectively. The VAS for leg pain and ODI scores improved remarkably from 7.54 ± 0.96 to 1.50 ± 0.51 (P < 0.05) and from 69.29 ± 9.91 to 17.43 ± 3.69 (P < 0.05) a year after operation, respectively. According to the modified MacNab criteria of the last follow-up, the excellent and good rates are 92.86%. Two of the patients had complications, one had nerve root injury and the other had postoperative dysesthesia. Conclusions: PEID achieved good clinical outcomes in the treatment of L5-S1 CLDH, and it was a safe and effective minimally invasive surgery for L5-S1 CLDH.

18.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298160

RESUMO

When considering the transition probability matrix of ordinal patterns, transition permutation entropy (TPE) can effectively extract fault features by quantifying the irregularity and complexity of signals. However, TPE can only characterize the complexity of the vibration signals at a single scale. Therefore, a multiscale transition permutation entropy (MTPE) technique has been proposed. However, the original multiscale method still has some inherent defects in the coarse-grained process, such as considerably shortening the length of time series at large scale, which leads to a low entropy evaluation accuracy. In order to solve these problems, a composite multiscale transition permutation entropy (CMTPE) method was proposed in order to improve the incomplete coarse-grained analysis of MTPE by avoiding the loss of some key information in the original fault signals, and to improve the performance of feature extraction, robustness to noise, and accuracy of entropy estimation. A fault diagnosis strategy based on CMTPE and an extreme learning machine (ELM) was proposed. Both simulation and experimental signals verified the advantages of the proposed CMTPE method. The results show that, compared with other comparison strategies, this strategy has better robustness, and can carry out feature recognition and bearing fault diagnosis more accurately and with improved stability.


Assuntos
Algoritmos , Eletroencefalografia , Entropia , Eletroencefalografia/métodos , Simulação por Computador , Fatores de Tempo
19.
Front Bioeng Biotechnol ; 10: 891765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910014

RESUMO

At present, bone-based products are abundant, and the main sources are bovine bone and pig bone, but there are few studies on the development of deer bone as a bone repair material. Deer bone has important osteogenic effects in the theory of traditional Chinese medicine. It is rich in protein, ossein, and a variety of trace elements, with the effect of strengthening tendons and bones. Nanomaterials and their application in the repair of bone defects have become a research hotspot in bone tissue engineering. In this study, nano-deer bone meal (nBM), nano-calcined deer bone meal, and nano-demineralized bone matrix were successfully prepared. It was found that the Ca/P ratio in deer bone was significantly higher than that in cow bone and human bone tissue, and deer bone contained beneficial trace elements, such as potassium, iron, selenium, and zinc, which were not found in cow bone. The three kinds of deer bone powders prepared in this study had good biocompatibility and met the implantation standards of medical biomaterials. Cell function studies showed that compared with other bone powders, due to the presence of organic active ingredients and inorganic calcium and phosphate salts, nBM had excellent performance in the proliferation, adhesion, migration, and differentiation of bone marrow mesenchymal stem cells. These findings indicate that nBM can be used as a potential osteoinductive active nanomaterial to enhance bone tissue engineering scaffolds with certain application prospects.

20.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957019

RESUMO

Increasing and improving the critical transition temperature (TC), current density (JC) and the Meissner effect (HC) of conventional superconductors are the most important problems in superconductivity research, but progress has been slow for many years. In this study, by introducing the p-n junction nanostructured electroluminescent inhomogeneous phase with a red wavelength to realize energy injection, we found the improved property of smart meta-superconductors MgB2, the critical transition temperature TC increases by 0.8 K, the current density JC increases by 37%, and the diamagnetism of the Meissner effect HC also significantly improved, compared with pure MgB2. Compared with the previous yttrium oxide inhomogeneous phase, the p-n junction has a higher luminescence intensity, a longer stable life and simpler external field requirements. The coupling between superconducting electrons and surface plasmon polaritons may be explained by this phenomenon. The realization of smart meta-superconductor by the electroluminescent inhomogeneous phase provides a new way to improve the performance of superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA