Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Synth Syst Biotechnol ; 10(1): 39-48, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39224148

RESUMO

Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.

2.
Microbiol Res ; 289: 127881, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39241502

RESUMO

Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. AIM OF REVIEW: The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. EXPECTED CONTRIBUTIONS OF REVIEW: Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.


Assuntos
Carbono , Manitol , Biologia Sintética , Manitol/metabolismo , Biologia Sintética/métodos , Carbono/metabolismo , Glucose/metabolismo , Fermentação , Engenharia Metabólica/métodos , Alga Marinha/metabolismo , Organismos Aquáticos/metabolismo , Organismos Aquáticos/genética , Bactérias/metabolismo , Bactérias/genética , Repressão Catabólica , Água do Mar/microbiologia
3.
Front Microbiol ; 15: 1425553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109208

RESUMO

Introduction: Curing is a critical process that determines the sensory quality of cigars. The impact of oxygen on cigar curing and the mechanisms by which it regulates microbial changes affecting cigar quality are not well understood. Methods: In this study, we selected handmade cigars from the same batch and conducted curing experiments in environments with varying oxygen concentrations (equivalent to 0.1%, 6-12, and 15% of atmospheric oxygen concentration). We collected samples over 60 days and analyzed the distribution of microbial communities using high-throughput sequencing. Combined with the analysis of total sugars, proteins, flavor substances, and other chemical compounds, we elucidated how different oxygen concentrations affect the cigar curing process, influence microbial community succession, and ultimately impact cigar quality. Results: Our results revealed significant differences in bacterial community composition under different oxygen conditions. Under aerobic conditions, Cyanobacteria were the dominant bacteria, while under oxygen-limited conditions, Staphylococcus and Corynebacterium predominated. As oxygen concentration decreased, so did the richness and diversity of the bacterial community. Conversely, oxygen concentration had a lesser impact on fungi; Aspergillus was the dominant genus in all samples. We also found that Enterococcus showed a positive correlation with aspartic acid, alanine, and 4-aminobutyric acid and a negative correlation with cysteine. Cigars cured at 15% oxygen concentration for 60 days exhibited optimal quality, particularly in terms of flavor richness and sweetness. Discussion: These findings suggest that oxygen concentration can alter cigar quality by regulating aerobic and anaerobic microbial community succession. The relationship between specific microbial communities and flavor compounds also provides a theoretical reference for developing artificial control technologies in the cigar curing process.

4.
Microorganisms ; 12(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39203534

RESUMO

Bacillus licheniformis is recognised as an exceptional expression platform in biomanufacturing due to its ability to produce high-value products. Consequently, metabolic engineering of B. licheniformis is increasingly pursued to enhance its utility as a biomanufacturing vehicle. Effective B. licheniformis cell factories require promoters that enable regulated expression of target genes. This review discusses recent advancements in the characterisation, synthesis, and engineering of B. licheniformis promoters. We highlight the application of constitutive promoters, quorum sensing promoters, and inducible promoters in protein and chemical synthesis. Additionally, we summarise efforts to expand the promoter toolbox through hybrid promoter engineering, transcription factor-based inducible promoter engineering, and ribosome binding site (RBS) engineering.

5.
BMC Pediatr ; 24(1): 544, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180038

RESUMO

BACKGROUND: Infantile Juvenile polyposis of infantile (JPI) is a rare and aggressive form of juvenile polyposis syndrome (JPS) typically diagnosed in the first year of life. It often carries a poor prognosis due to chronic gastrointestinal bleeding, protein-losing enteropathy, malnutrition and immune deficiency. CASE PRESENTATION: We report a case of a girl initially presented with pallor at 7 months of age, which progressed to gastrointestinal bleeding and protein-losing enteropathy. Endoscopic examination, which included both upper gastrointestinal endoscopy and enteroscopy, showed diffuse polyposis. Histopathology results indicated the presence of juvenile polyps with no dysplasia in all removed polyps. Genetic testing identified a 2.1 Mb deletion on chromosome 10q23.2q23.31 involving the phosphatase and tensin homolog (PTEN) and bone morphogenetic protein receptor type IA (BMPR1A) genes. Treatment with sirolimus initiated at 10 months of age led to a reduction in the need for blood and albumin infusions, improved patient growth, and quality of life. While the frequency of endoscopic evaluations decreased with sirolimus, regular endoscopic polypectomy every 5 months remained necessary. However, discontinuation of sirolimus resulted in polyp recurrence after 2 months due to pneumonia. CONCLUSION: This case highlights sirolimus treatment can alleviate many complications of JPI, it does not eliminate the need for aggressive polypectomy.


Assuntos
Polipose Intestinal , Sirolimo , Humanos , Feminino , Sirolimo/uso terapêutico , Polipose Intestinal/congênito , Polipose Intestinal/genética , Polipose Intestinal/tratamento farmacológico , Polipose Intestinal/diagnóstico , Lactente , Síndromes Neoplásicas Hereditárias/tratamento farmacológico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Imunossupressores/uso terapêutico , PTEN Fosfo-Hidrolase/genética
6.
Front Pediatr ; 12: 1369823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783921

RESUMO

Background and purpose: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental disorders that is characterized by core features in social communication impairment and restricted, repetitive sensory-motor behaviors. This study aimed to further investigate the utilization of fecal microbiota transplantation (FMT) in children with ASD, both with and without gastrointestinal (GI) symptoms, evaluate the effect of FMT and analyze the alterations in bacterial and fungal composition within the gut microbiota. Methods: A total of 38 children diagnosed with ASD participated in the study and underwent oral lyophilized FMT treatment. The dosage of the FMT treatment was determined based on a ratio of 1 g of donor stool per 1 kg of recipient body weight, with a frequency of once every 4 weeks for a total of 12 weeks. In addition, 30 healthy controls (HC) were included in the analysis. The clinical efficacy of FMT was evaluated, while the composition of fecal bacteria and fungi was determined using 16S rRNA and ITS gene sequencing methods. Results: Median age of the 38 children with ASD was 7 years. Among these children, 84.2% (32 of 38) were boys and 81.6% (31 of 38) exhibited GI symptoms, with indigestion, constipation and diarrhea being the most common symptoms. Sample collections and assessments were conducted at baseline (week 0), post-treatment (week 12) and follow-up (week 20). At the end of the follow-up phase after FMT treatment, the autism behavior checklist (ABC) scores decreased by 23% from baseline, and there was a 10% reduction in scores on the childhood autism rating scale (CARS), a 6% reduction in scores on the social responsiveness scale (SRS) and a 10% reduction in scores on the sleep disturbance scale for children (SDSC). In addition, short-term adverse events observed included vomiting and fever in 2 participants, which were self-limiting and resolved within 24 h, and no long-term adverse events were observed. Although there was no significant difference in alpha and beta diversity in children with ASD before and after FMT therapy, the FMT treatment resulted in alterations in the relative abundances of various bacterial and fungal genera in the samples of ASD patients. Comparisons between children with ASD and healthy controls (HC) revealed statistically significant differences in microbial abundance before and after FMT. Blautia, Sellimonas, Saccharomycopsis and Cystobasidium were more abundant in children with ASD than in HC, while Dorea were less abundant. After FMT treatment, levels of Blautia, Sellimonas, Saccharomycopsis and Cystobasidium decreased, while levels of Dorea increased. Moreover, the increased abundances of Fusicatenibacter, Erysipelotrichaceae_UCG-003, Saccharomyces, Rhodotorula, Cutaneotrichosporon and Zygosaccharomyces were negatively correlated with the scores of ASD core symptoms. Conclusions: Oral lyophilized FMT could improve GI and ASD related symptoms, as well as sleep disturbances, and alter the gut bacterial and fungal microbiota composition in children with ASD. Clinical Trial Registration: Chinese Clinical Trial Registry, ChiCTR2200055943. Registered 28 January 2022, www.chictr.org.cn.

7.
Clin Epigenetics ; 16(1): 56, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643219

RESUMO

BACKGROUND: Cervical cancer remains a leading cause of death, particularly in developing countries. WHO screening guidelines recommend human papilloma virus (HPV) detection as a means to identify women at risk of developing cervical cancer. While HPV testing identifies those at risk, it does not specifically distinguish individuals with neoplasia. We investigated whether a quantitative molecular test that measures methylated DNA markers could identify high-risk lesions in the cervix with accuracy. RESULTS: Marker discovery was performed in TCGA-CESC Infinium Methylation 450 K Array database and verified in three other public datasets. The panel was technically validated using Quantitative Multiplex-Methylation-Specific PCR in tissue sections (N = 252) and cervical smears (N = 244) from the USA, South Africa, and Vietnam. The gene panel consisted of FMN2, EDNRB, ZNF671, TBXT, and MOS. Cervical tissue samples from all three countries showed highly significant differential methylation in squamous cell carcinoma (SCC) with a sensitivity of 100% [95% CI 74.12-100.00], and specificity of 91% [95% CI 62.26-99.53] to 96% [95% CI 79.01-99.78], and receiver operating characteristic area under the curve (ROC AUC) = 1.000 [95% CI 1.00-1.00] compared to benign cervical tissue, and cervical intraepithelial neoplasia 2/3 with sensitivity of 55% [95% CI 37.77-70.84] to 89% [95% CI 67.20-98.03], specificity of 93% [95% CI 84.07-97.38] to 96% [95% CI 79.01-99.78], and a ROC AUC ranging from 0.793 [95% CI 0.68-0.89] to 0.99 [95% CI 0.97-1.00] compared to CIN1. In cervical smears, the marker panel detected SCC with a sensitivity of 87% [95% CI 77.45-92.69], specificity 95% [95% CI 88.64-98.18], and ROC AUC = 0.925 [95% CI 0.878-0.974] compared to normal, and high-grade squamous intraepithelial lesion (HSIL) at a sensitivity of 70% (95% CI 58.11-80.44), specificity of 94% (95% CI 88.30-97.40), and ROC AUC = 0.884 (95% CI 0.822-0.945) compared to low-grade intraepithelial lesion (LSIL)/normal in an analysis of pooled data from the three countries. Similar to HPV-positive, HPV-negative cervical carcinomas were frequently hypermethylated for these markers. CONCLUSIONS: This 5-marker panel detected SCC and HSIL in cervical smears with a high level of sensitivity and specificity. Molecular tests with the ability to rapidly detect high-risk HSIL will lead to timely treatment for those in need and prevent unnecessary procedures in women with low-risk lesions throughout the world. Validation of these markers in prospectively collected cervical smear cells followed by the development of a hypermethylated marker-based cervical cancer detection test is warranted.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Países em Desenvolvimento , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/genética , Marcadores Genéticos , Metilação de DNA , Carcinoma de Células Escamosas/genética , Papillomaviridae/genética , Esfregaço Vaginal/métodos , Proteínas Supressoras de Tumor/genética
8.
BMC Med ; 22(1): 148, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561738

RESUMO

BACKGROUND: Indobufen is widely used in patients with aspirin intolerance in East Asia. The OPTION trial launched by our cardiac center examined the performance of indobufen based dual antiplatelet therapy (DAPT) after percutaneous coronary intervention (PCI). However, the vast majority of patients with acute coronary syndrome (ACS) and aspirin intolerance were excluded. We aimed to explore this question in a real-world population. METHODS: Patients enrolled in the ASPIRATION registry were grouped according to the DAPT strategy that they received after PCI. The primary endpoints were major adverse cardiovascular and cerebrovascular events (MACCE) and Bleeding Academic Research Consortium (BARC) type 2, 3, or 5 bleeding. Propensity score matching (PSM) was adopted for confounder adjustment. RESULTS: A total of 7135 patients were reviewed. After one-year follow-up, the indobufen group was associated with the same risk of MACCE versus the aspirin group after PSM (6.5% vs. 6.5%, hazard ratio [HR] = 0.99, 95% confidence interval [CI] = 0.65 to 1.52, P = 0.978). However, BARC type 2, 3, or 5 bleeding was significantly reduced (3.0% vs. 11.9%, HR = 0.24, 95% CI = 0.15 to 0.40, P < 0.001). These results were generally consistent across different subgroups including aspirin intolerance, except that indobufen appeared to increase the risk of MACCE in patients with ACS. CONCLUSIONS: Indobufen shared the same risk of MACCE but a lower risk of bleeding after PCI versus aspirin from a real-world perspective. Due to the observational nature of the current analysis, future studies are still warranted to further evaluate the efficacy of indobufen based DAPT, especially in patients with ACS. TRIAL REGISTRATION: Chinese Clinical Trial Register ( https://www.chictr.org.cn ); Number: ChiCTR2300067274.


Assuntos
Síndrome Coronariana Aguda , Isoindóis , Intervenção Coronária Percutânea , Fenilbutiratos , Humanos , Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/cirurgia , Aspirina/efeitos adversos , Quimioterapia Combinada , Hemorragia/induzido quimicamente , Hemorragia/epidemiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Inibidores da Agregação Plaquetária/efeitos adversos , Sistema de Registros , Resultado do Tratamento
9.
ACS Synth Biol ; 13(2): 658-668, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38319655

RESUMO

The use of Paenibacillus polymyxa as an industrial producer is limited by the lack of suitable synthetic biology tools. In this study, we identified a native sucrose operon in P. polymyxa. Its structural and functional relationship analysis revealed the presence of multiple regulatory elements, including four ScrR-binding sites and a catabolite-responsive element (CRE). In P. polymyxa, we established a cascade T7 expression system involving an integrated T7 RNA polymerase (T7P) regulated by the sucrose operon and a T7 promoter. It enables controllable gene expression by sucrose and regulatory elements, and a 5-fold increase in expression efficiency compared with the original sucrose operon was achieved. Further deletion of SacB in P. polymyxa resulted in a 38.95% increase in the level of thermophilic lipase (TrLip) production using the cascade T7 induction system. The results highlight the effectiveness of sucrose regulation as a novel synthetic biology tool, which facilitates exploring gene circuits and enables their dynamic regulation.


Assuntos
Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Sacarose/metabolismo , Regiões Promotoras Genéticas/genética , Óperon/genética
10.
Basic Res Cardiol ; 119(1): 113-131, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168863

RESUMO

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Assuntos
Autofagia Mediada por Chaperonas , Traumatismo por Reperfusão , Humanos , Pinacidil/metabolismo , Células Endoteliais/metabolismo , Calreticulina/metabolismo , Cálcio/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose
11.
Microorganisms ; 12(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257987

RESUMO

Washing machines are one of the tools that bring great convenience to people's daily lives. However, washing machines that have been used for a long time often develop issues such as odor and mold, which can pose health hazards to consumers. There exists a conspicuous gap in our understanding of the microorganisms that inhabit the inner workings of washing machines. In this study, samples were collected from 22 washing machines in Shanghai, China, including both water eluted from different parts of washing machines and biofilms. Quantitative qualitative analysis was performed using fluorescence PCR quantification, and microbial communities were characterized by high-throughput sequencing (HTS). This showed that the microbial communities in all samples were predominantly composed of bacteria. HTS results showed that in the eluted water samples, the bacteria mainly included Pseudomonas, Enhydrobacter, Brevibacterium, and Acinetobacter. Conversely, in the biofilm samples, Enhydrobacter and Brevibacterium were the predominant bacterial microorganisms. Correlation analysis results revealed that microbial colonies in washing machines were significantly correlated with years of use and the type of detergent used to clean the washing machine. As numerous pathogenic microorganisms can be observed in the results, effective preventive measures and future research are essential to mitigate these health problems and ensure the continued safe use of these household appliances.

12.
Int J Biol Macromol ; 254(Pt 1): 127730, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287588

RESUMO

In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of ß-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of ß-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.


Assuntos
Curcumina , Schizophyllum , Emulsões/química , beta Caroteno/química , Curcumina/farmacologia , Curcumina/química , Schizophyllum/metabolismo , Fermentação , Polissacarídeos/química
13.
Pharmacol Res ; 200: 107057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218357

RESUMO

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Cardiomiopatias Diabéticas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Nicorandil/farmacologia , Nicorandil/uso terapêutico , Nicorandil/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo
14.
J Agric Food Chem ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37927088

RESUMO

Bacillus licheniformis plays a crucial role as a microbial host in the food industry and shows promising potential as a probiotic for human intestinal regulation. It exhibits a remarkable ability to utilize lactose as its sole carbon source. Despite its significance, the lactose-related metabolic pathway in this strain remains unclear. In this study, we identified a novel lactose-specific operon (lacDCAB) in B. licheniformis, consisting of the lacD gene that encodes a unique 6-phospho-ß-galactosidase belonging to the GH4 family, and the lacCAB genes encoding a lactose-specific PTS1 system. Notably, we constructed and assessed an array library of transport and catabolic modules specifically for lactose utilization. Among these modules, PDS-lacD-P2-pts1 demonstrated the highest specific lactose consumption rate of 0.64 g/(L·h·OD), which was 8 times higher than that of the control strain. Furthermore, we developed a dual carbon source transport model based on the PDS-lacD-P2-pts1 assembly module, which highlighted efficient coutilization of glucose/sucrose, lactose/sucrose, lactose/galactose, and lactose/2,3-butanediol. This study provides insight into the lactose-specific metabolic pathway of B. licheniformis and presents a promising strategy for enhancing lactose utilization efficiency and mixed carbon source coutilization.

15.
Nucleic Acids Res ; 51(21): 11952-11966, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850640

RESUMO

Synthetic regulation of metabolic fluxes has emerged as a common strategy to improve the performance of microbial cell factories. The present regulatory toolboxes predominantly rely on the control and manipulation of carbon pathways. Nitrogen is an essential nutrient that plays a vital role in growth and metabolism. However, the availability of broadly applicable tools based on nitrogen pathways for metabolic regulation remains limited. In this work, we present a novel regulatory system that harnesses signals associated with nitrogen metabolism to redirect excess carbon flux in Bacillus licheniformis. By engineering the native transcription factor GlnR and incorporating a sorbitol-responsive element, we achieved a remarkable 99% inhibition of the expression of the green fluorescent protein reporter gene. Leveraging this system, we identified the optimal redirection point for the overflow carbon flux, resulting in a substantial 79.5% reduction in acetoin accumulation and a 2.6-fold increase in acetate production. This work highlight the significance of nitrogen metabolism in synthetic biology and its valuable contribution to metabolic engineering. Furthermore, our work paves the way for multidimensional metabolic regulation in future synthetic biology endeavors.


Assuntos
Bacillus licheniformis , Engenharia Metabólica , Sorbitol , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Carbono/metabolismo , Engenharia Metabólica/métodos , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sorbitol/metabolismo
16.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852321

RESUMO

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteômica , Mitofagia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Quinases Associadas a rho
17.
Ann Med ; 55(2): 2265381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824254

RESUMO

BACKGROUND: As folates are essential for embryonic development and growth, it is necessary to accurately determine the levels of folates in plasma and red blood cells (RBCs) for clinical intervention. The aims of this study were to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantitation of folates in plasma and RBCs and to examine the association between plasma and RBC folate concentrations and gestational diabetes mellitus (GDM), gestational hypertension (GH) and preeclampsia (PE). METHODS: With the in-house developed LC-MS/MS, a retrospective cross-sectional study was conducted. The healthy pregnant women of first- (n = 147), second- (n = 84) and third-trimester (n = 141) or the women diagnosed with GDM (n = 84), GH (n = 58) or PE (n = 23), that were aged between 22 and 46 years old and registered at our institute, were subjected for measurement of folic acid (FA) and 5-methyltetrahydrofolate (5-MTHF), followed by appropriate statistical association analysis. RESULTS: The assay for simultaneous quantitation of FA and 5-MTHF in plasma and RBCs was linear, stable, with imprecision less than 15% and recoveries within ±10%. The lower limits of quantification for FA and 5-MTHF measurement in whole blood were 0.57 and 1.09 nmol/L, and in plasma were 0.5 and 1 nmol/L, respectively. In the association analysis, the patients with lower RBC folate level (<906 nmol/L) presented higher risks of PE development (OR 4.861 [95% CI 1.411-16.505]) by logistic regression and restricted cubic spline (RCS) regression in a nonlinear fashion. In addition, higher level of plasma folates in pregnancy was significantly associated with GH risk but may be protective for the development of GDM. CONCLUSIONS: The in-house developed LC-MS/MS method for folates and metabolites in plasma or RBC showed satisfactory analytical performance for clinical application. Further, the levels of folates and metabolites were diversely associated with GDM, GH and PE development.


Assuntos
Pré-Eclâmpsia , Espectrometria de Massas em Tandem , Feminino , Humanos , Gravidez , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Estudos Retrospectivos , Estudos Transversais , Ácido Fólico/análise , Eritrócitos/química
18.
Synth Syst Biotechnol ; 8(4): 565-577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691767

RESUMO

Transcription factors play an indispensable role in maintaining cellular viability and finely regulating complex internal metabolic networks. These crucial bioactive functions rely on their ability to respond to effectors and concurrently interact with binding sites. Recent advancements have brought innovative insights into the understanding of transcription factors. In this review, we comprehensively summarize the mechanisms by which transcription factors carry out their functions, along with calculation and experimental-based methods employed in their identification. Additionally, we highlight recent achievements in the application of transcription factors in various biotechnological fields, including cell engineering, human health, and biomanufacturing. Finally, the current limitations of research and provide prospects for future investigations are discussed. This review will provide enlightening theoretical guidance for transcription factors engineering.

19.
Microorganisms ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764147

RESUMO

Catabolite control protein A (CcpA) is a critical regulator in Gram-positive bacteria that orchestrates carbon metabolism by coordinating the utilization of different carbon sources. Although it has been widely proved that CcpA helps prioritize the utilization of glucose over other carbon sources, this global regulator's precise mechanism of action remains unclear. In this study, a mutant Bacillus licheniformis deleted for CcpA was constructed. Cell growth, carbon utilization, metabolites and the transcription of key enzymes of the mutant strain were compared with that of the wild-type one. It was found that CcpA is involved in the regulation of glucose concentration metabolism in Bacillus. At the same time, CcpA regulates glucose metabolism by inhibiting acetic acid synthesis and pentose phosphate pathway key gene zwF. The conversion rate of acetic acid is increased by about 3.5 times after ccpA is deleted. The present study provides a new mechanism of carbon metabolism and acetic acid balance regulated by CcpA. On the one hand, this work deepens the understanding of the regulatory function of CcpA and provides a new view on the regulation of glucose metabolism. On the other hand, it is helpful to the transformation of B. licheniformis chassis microorganisms.

20.
AMB Express ; 13(1): 89, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633871

RESUMO

Bacillus licheniformis and its related strains have found extensive applications in diverse industries, agriculture, and medicine. However, the current breeding methods for this strain primarily rely on natural screening and traditional mutagenesis. The limited availability of efficient genetic engineering tools, particularly recombination techniques, has hindered further advancements in its applications. In this study, we conducted a comprehensive investigation to identify and characterize a recombinase, RecT, derived from a Bacillus phage. Remarkably, the recombinase exhibited a 105-fold enhancement in the recombination efficiency of the strain. To facilitate genome editing, we developed a system based on the conditional expression of RecT using a rhamnose-inducible promoter (Prha). The efficacy of this system was evaluated by deleting the amyL gene, which encodes an α-amylase. Our findings revealed that the induction time and concentration of rhamnose, along with the generation time of the strain, significantly influenced the editing efficiency. Optimal conditions for genome editing were determined as follows: the wild-type strain was initially transformed with the genome editing plasmid, followed by cultivation and induction with 1.5% rhamnose for 8 h. Subsequently, the strain was further cultured for an additional 24 h, equivalent to approximately three generations. Consequently, the recombination efficiency reached an impressive 16.67%. This study represents a significant advancement in enhancing the recombination efficiency of B. licheniformis through the utilization of a RecT-based recombination system. Moreover, it provides a highly effective genome editing tool for genetic engineering applications in this strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA