Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Genome Biol ; 25(1): 232, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198826

RESUMO

BACKGROUND: The relationship between human gut microbiota and high-altitude hypoxia acclimatization remains highly controversial. This stems primarily from uncertainties regarding both the potential temporal changes in the microbiota under such conditions and the existence of any dominant or core bacteria that may assist in host acclimatization. RESULTS: To address these issues, and to control for variables commonly present in previous studies which significantly impact the results obtained, namely genetic background, ethnicity, lifestyle, and diet, we conducted a 108-day longitudinal study on the same cohort comprising 45 healthy Han adults who traveled from lowland Chongqing, 243 masl, to high-altitude plateau Lhasa, Xizang, 3658 masl, and back. Using shotgun metagenomic profiling, we study temporal changes in gut microbiota composition at different timepoints. The results show a significant reduction in the species and functional diversity of the gut microbiota, along with a marked increase in functional redundancy. These changes are primarily driven by the overgrowth of Blautia A, a genus that is also abundant in six independent Han cohorts with long-term duration in lower hypoxia environment in Shigatse, Xizang, at 4700 masl. Further animal experiments indicate that Blautia A-fed mice exhibit enhanced intestinal health and a better acclimatization phenotype to sustained hypoxic stress. CONCLUSIONS: Our study underscores the importance of Blautia A species in the gut microbiota's rapid response to high-altitude hypoxia and its potential role in maintaining intestinal health and aiding host adaptation to extreme environments, likely via anti-inflammation and intestinal barrier protection.


Assuntos
Aclimatação , Altitude , Microbioma Gastrointestinal , Hipóxia , Humanos , Animais , Adulto , Masculino , Hipóxia/genética , Camundongos , Feminino , Estudos Longitudinais , Doença da Altitude/microbiologia , Doença da Altitude/genética , Pessoa de Meia-Idade
2.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

3.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38316045

RESUMO

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

4.
Zool Res ; 44(6): 1052-1063, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37872006

RESUMO

Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima's D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the "genomic islands of speciation", we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.


Assuntos
Meio Ambiente , Murinae , Ratos , Animais , Filogenia , Murinae/genética , China , Genômica
5.
Cell Rep ; 42(5): 112413, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37164007

RESUMO

Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.


Assuntos
Genoma Mitocondrial , Humanos , Japão , América , China , DNA Mitocondrial/genética , Haplótipos/genética , Filogenia
6.
Insects ; 14(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975944

RESUMO

The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae butterflies in the HDMs remain unknown to date. The lack of such knowledge has already become an obstacle in formulating effective butterfly conservation strategies. The present research compiled a 59-species dataset with 1938 occurrence points. The Maxent model was applied to analyse the spatial pattern of species richness in subfamilies Parnassiinae and Papilioninae, as well as to predict the response under the influence of climate change. The spatial pattern of both subfamilies in the HDMs has obvious elevation prevalence, with Parnassiinae concentrated in the subalpine to alpine areas (2500-5500 m) in western Sichuan, northwestern Yunnan and eastern Tibet, while Papilioninae is concentrated in the low- to medium-elevation areas (1500-3500 m) in the river valleys of western Yunnan and western Sichuan. Under the influence of climate change, both subfamilies would exhibit northward and upward range shifts. The majority of Parnassiinae species would experience drastic habitat contraction, resulting in lower species richness across the HDMs. In contrast, most Papilioninae species would experience habitat expansion, and the species richness would also increase significantly. The findings of this research should provide new insights and a clue for butterfly diversity and climatic vulnerability in southwestern China. Future conservation efforts should be focused on species with habitat contraction, narrow-ranged distribution and endemicity with both in situ and ex situ measures, especially in protected areas. Commercialised collecting targeting these species must also be regulated by future legislation.

7.
J Phys Chem Lett ; 13(15): 3377-3381, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404057

RESUMO

ß-Ga2O3 is considered an attractive candidate for next-generation high-power electronics due to its large band gap of 4.9 eV and high breakdown electrical field of 8 MV/cm. However, the relatively low carrier concentration and low electron mobility in the ß-Ga2O3-based device limit its application. Herein, the high-quality ß-Ga2O3 single crystal with high doping concentration of ∼3.2 × 1019 cm-3 was realized using an optical float-zone method through Ta doping. In contrast to the SiO2/ß-Ga2O3 gate stack structure, we used hexagonal boron nitride as the gate insulator, which is sufficient to suppress the metal-insulator-semiconductor (MIS) interface defects of the ß-Ga2O3-based MIS field-effect transistors (FETs), exhibiting outstanding performances with a low specific on-resistance of ∼6.3 mΩ·cm2, a high current on/off ratio of ∼108, and a high mobility of ∼91.0 cm2/(V s). Our findings offer a unique perspective to fabricate high-performance ß-Ga2O3 FETs for next-generation high-power nanoelectronic applications.

8.
ACS Appl Mater Interfaces ; 14(14): 16846-16855, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363489

RESUMO

The superior optical and electronic characteristics of quasi-two-dimensional ß-Ga2O3 make it suitable for solar-blind (200-280 nm) photodetectors (PDs). The metal-semiconductor-metal (MSM) PDs commonly suffer from low photoresponsivity, slow response speed, and a narrow detection wavelength range despite their simple fabrication process. Herein, we report a high-performance MSM PD by integrating exfoliated ß-Ga2O3 flakes with zero-dimensional graphene quantum dots (GQDs), which exhibits the advantages of enhancing the photoresponsivity, shortening the photoresponse time, and stimulating a broad range of photon detection. The hybrid GQDs/ß-Ga2O3 heterostructure PD is sensitive to deep-ultraviolet (DUV) light (250 nm) with an ultrahigh responsivity (R of ∼2.4 × 105 A/W), a large detectivity (D* of ∼4.3 × 1013 Jones), an excellent external quantum efficiency (EQE of ∼1.2 × 108%), and a fast photoresponse (150 ms), which is superior to the bare ß-Ga2O3 PD. These improvements result from effective charge transfer due to the introduction of GQDs, which enhance the light absorption and the generation of electron-hole pairs. In addition, the hybrid GQDs/ß-Ga2O3 PD also exhibits better photoelectric performance than the bare ß-Ga2O3 PD at a 1000 nm wavelength. As a conclusion, the hybrid GQDs/ß-Ga2O3 DUV photodetector shows potential applications in commercial optoelectronic products and provides an alternative solution for the design and preparation of high-performance photodetectors.

9.
Front Cell Infect Microbiol ; 12: 1005318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683694

RESUMO

Background and aims: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease with a high incidence, and the situation is not optimistic. Intestinal flora imbalance is strongly correlated with NAFLD pathogenesis. Zhishi Daozhi Decoction (ZDD) is a water decoction of the herbs used in the classical Chinese medicine prescription Zhishi Daozhi Pills. Zhishi Daozhi Pills has shown promising hepatoprotective and hypolipidemic properties, but its specific mechanism remains unclear. Methods: Mice were fed on a high fat-rich diet (HFD) for ten weeks, and then the animals were administrated ZDD through oral gavage for four weeks. The serum liver function and blood lipid indexes of the mice were then tested using an automatic biochemical analyzer. H&E and Oil Red O staining were used to observe the pathological conditions of mice liver tissue, and 16S rRNA sequencing technology was used to analyze the changes in intestinal flora of mice. The concentration of short-chain fatty acids (SCFAs) in the gut of mice was analyzed by gas chromatography-mass spectrometry (GC-MS). The expression of tight junction (TJ) proteins between ileal mucosal epithelial cells was analyzed using the immunofluorescence technique. Results: ZDD was found to reduce the bodyweight of NAFLD mice, reduce serum TG, CHO, ALT, and AST levels, reduce fat accumulation in liver tissue, make the structure of intestinal flora comparable to the control group, and increase the concentration of intestinal SCFAs. It was also found to increase the expression of TJ proteins such as occludin and ZO-1, making them comparable to the control group. Conclusions: ZDD has a therapeutic effect on NAFLD mice induced by HFD, which may act by optimizing the intestinal flora structure.


Assuntos
Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , RNA Ribossômico 16S/genética , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico
10.
Nanoscale ; 13(34): 14435-14441, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473171

RESUMO

A high optoelectronic performance ReS2/ReSe2 van der Waals (vdW) heterojunction phototransistor utilizing thin hafnium oxide (HfO2) as a local-back-gate dielectric layer was prepared and studied. The heterojunction-based phototransistor exhibits a superior electrical performance with a large rectification ratio of ∼103. Furthermore, unlike diode-like heterojunction devices, the innovative introduction of a local-back-gate in this phototransistor provides an outstanding gate-tunable capability with an ultra-low off-state current of 433 fA and a high on/off current ratio of over 106. And under optical excitation of a wide spectrum from 400 to 633 nm, an excellent photodetection responsivity at the 104 A W-1 level and the maximum normalized detectivity of 1.8 × 1015 Jones @ 633 nm have been demonstrated. Such high performances are attributed to the band alignment of the type-II heterojunction and the suppression of dark current by the local-back-gate. This work provides a promising reference for two-dimensional (2D) Re-based heterojunction optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA