Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634322

RESUMO

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

2.
Nano Lett ; 24(11): 3323-3330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466652

RESUMO

Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.

3.
Adv Mater ; 36(19): e2204884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374724

RESUMO

Phonon polaritons, quasiparticles arising from strong coupling between electromagnetic waves and optical phonons, have potential for applications in subdiffraction imaging, sensing, thermal conduction enhancement, and spectroscopy signal enhancement. A new class of phonon polaritons in low-symmetry monoclinic crystals, hyperbolic shear polaritons (HShPs), have been verified recently in ß-Ga2O3 by free electron laser (FEL) measurements. However, detailed behaviors of HShPs in ß-Ga2O3 nanostructures still remain unknown. Here, by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy, the experimental observation of multiple HShPs in ß-Ga2O3 in the mid-infrared (MIR) and far-infrared (FIR) ranges is reported. HShPs in various ß-Ga2O3 nanorods and a ß-Ga2O3 nanodisk are excited. The frequency-dependent rotation and shear effect of HShPs reflect on the distribution of EELS signals. The propagation and reflection of HShPs in nanostructures are clarified by simulations of electric field distribution. These findings suggest that, with its tunable broad spectral HShPs, ß-Ga2O3 is an excellent candidate for nanophotonic applications.

4.
Phys Chem Chem Phys ; 25(46): 32158-32165, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37986583

RESUMO

In this paper, we report a joint experimental and computational study to elaborate the mechanism for the photocatalytic CO2 reduction reaction (CO2RR). Experimental results indicate that the catalyst (sodium magnesium chlorophyll, MgChlNa2), which has a well-defined structure for calculation and understanding, can achieve the photoreduction of CO2 to CO only using water as a dispersant, without adding any photosensitizer or sacrificial agent. Subsequently, a series of structural models of the hydrogen-bonded complexes of the catalyst were constructed and outlined via utilizing density functional theory (DFT) calculations, including photophysical and photochemical processes. The results confirm that the rate-limiting step of the whole CO2RR was the intersystem crossing process. The electron and proton transfers involved in photophysical and photochemical processes are induced by hydrogen bonds in the excited states. The combination of experiments and calculations will provide an important reference for the design of high-efficiency photocatalysts in the photocatalytic CO2RR.

5.
Org Lett ; 25(39): 7100-7104, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37767977

RESUMO

C-H methylation of heteroarenes (e.g., indoles, pyrroles, etc.) is frequently applied in the synthesis of drug/biorelated compounds. We herein report the use of CO2/H2 as a methylation reagent for selective C-H methylation of indoles and pyrroles in the presence of cobalt/B(C6F5)3 cocatalysts. The Lewis acidic additive B(C6F5)3 is essential to achieving good reactivity for a broad scope of substituted indoles and pyrroles (20 examples, up to 92% yields). The C-H methylation is accomplished via the CO2 reduction/C-C bond formation/reduction sequence. Water is the only byproduct. This system based on the use of non-noble metal catalysts features an environmentally benign alternative for C-H methylation.

6.
Ultramicroscopy ; 253: 113818, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544270

RESUMO

Recent advances in scanning transmission electron microscopy have enabled atomic-scale focused, coherent, and monochromatic electron probes, achieving nanoscale spatial resolution, meV energy resolution, sufficient momentum resolution, and a wide energy detection range in electron energy-loss spectroscopy (EELS). A four-dimensional EELS (4D-EELS) dataset can be recorded with a slot aperture selecting the specific momentum direction in the diffraction plane and the beam scanning in two spatial dimensions. In this paper, the basic principle of the 4D-EELS technique and a few examples of its application are presented. In addition to parallelly acquired dispersion with energy down to a lattice vibration scale, it can map the real space variation of any EELS spectrum features with a specific momentum transfer and energy loss to study various locally inhomogeneous scattering processes. Furthermore, simple mathematical combinations associating the spectra at different momenta are feasible from the 4D dataset, e.g., the efficient acquisition of a reliable electron magnetic circular dichroism (EMCD) signal is demonstrated. This 4D-EELS technique provides new opportunities to probe the local dispersion and related physical properties at the nanoscale.

7.
Phys Rev Lett ; 131(1): 016201, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478456

RESUMO

In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.

8.
RSC Adv ; 13(24): 16363-16368, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266504

RESUMO

Selective hydrogenation of dimethyl terephthalate (DMT) is an ideal way to prepare 1,4-cyclohexane dicarboxylate (DMCD), an important intermediate and monomer. Even though noble metal-based catalysts (e.g., Ru, Pd) have been developed for selective hydrogenation of DMT, the use of non-precious Ni catalysts to achieve high activity and selectivity is still challenging. In this study, we present that only 0.5 wt% of KF by post-impregnated doping can significantly improve the performance of Ni/SiO2 catalysts (83% vs. 96% selectivity; 41% vs. 95% conversion). The selectivity of DMCD can be up to 97%, which is the highest reported over Ni catalysts. The boosting effect of KF modification might be due to higher amounts of Ni(0) species and lower amounts of moderate acidic sites, which are beneficial for selective hydrogenation of phenyl rings over hydrogenolysis of ester groups.

9.
J Org Chem ; 88(13): 8835-8842, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246751

RESUMO

The first example of catalytic thiocarbonylation of aryl iodides using CO2 has been achieved employing a combination of PdCl2 and carbazole-derived phosphine ligands. Under mild conditions, a broad scope of aryl iodides were converted to the desired thioester products in the presence of aryl or alkyl thiols (33 examples, up to 96% yields). The choice of metal, ligands, and reductant were crucial for high efficiency and chemoselectivity. Moreover, this strategy provided an effective method for the late-stage functionalization of biorelevant molecules.


Assuntos
Iodetos , Paládio , Dióxido de Carbono , Ligantes , Catálise
10.
Nat Commun ; 14(1): 2382, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185918

RESUMO

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.

11.
J Phys Chem Lett ; 14(20): 4842-4849, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37194946

RESUMO

DNA alkylating agents are widely used in anticancer pharmacology. Although shown to induce cross-linking and/or methylation of DNA, how they affect the mechanical properties of DNA and activity of DNA enzymes remains to be elucidated. Here, we perform single-molecule optical tweezer experiments on DNA treated with alkylating agents, including melphalan, cisplatin, and dacarbazine. While all three drugs induce a significant increase of overstretching force and a reduction of hysteresis, suggesting stabilization of DNA against shearing forces, their effects on elasticity of DNA were quite different, with the largest change in persistence length induced by cisplatin. Furthermore, we find that these alkylating-agent-induced changes on DNA have different effects on processivity of DNA polymerase, with melphalan and cisplatin showing significantly reduced activity and dacarbazine showing little effect. Overall, our results provide new insights into the effects for these alkylating agents, which could potentially facilitate a better design of related drugs.


Assuntos
Alquilantes , Melfalan , Alquilantes/farmacologia , Melfalan/farmacologia , Cisplatino , Antineoplásicos Alquilantes/farmacologia , Dacarbazina , DNA , Análise Espectral
12.
Proc Natl Acad Sci U S A ; 120(13): e2213650120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940334

RESUMO

Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO3/SrRuO3 interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO3 and magnetic moments in SrRuO3 near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.

13.
Ying Yong Sheng Tai Xue Bao ; 34(1): 249-256, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799401

RESUMO

Theoretical researches and practices on the life community of mountain-water-forest-farmland-lake-grassland-sandland mosaic and its protection and restoration have been gradually developed in China, which demands the support of a systematic disciplinary theory. Landscape ecology, as an interdisciplinary science of geography and ecology, can meet such demand thanks to its macroscopic spatial theory and technical system. Here, landscape ecology is taken as the supporting discipline of holistic protection and restoration for mountain-water-forest-farmland-lake-grassland-sandland mosaic. Firstly, we clarified that life community of mountain-water-forest-farmland-lake-grassland-sandland is a heterogeneously mosaic landscape, which bears all the characteristics of landscape and thus follows the principles of landscape ecology. Secondly, we expounded how the basic principles of landscape-ecological construction could be applied to the planning and evaluation of holistic protection and restoration for mountain-water-forest-farmland-lake-grassland-sandland mosaic. Finally, we summarized the new trend of landscape-ecological construction research, listed the theoretical and practical problems to be solved, and discussed how the projects of holistic protection and restoration for the mountain-water-forest-farmland-lake-grassland-sandland mosaic can provide a variety of practices for seeking the solutions. The combination of landscape ecology and practical restoration projects would generate effective solutions to realize sustainable development in terms of ecology, economy, and society in China and even the whole world.


Assuntos
Ecologia , Pradaria , Fazendas , Conservação dos Recursos Naturais , Lagos , Água , Florestas , China , Ecossistema
14.
ChemSusChem ; 16(10): e202202365, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36737418

RESUMO

The carbonylation of alkynes using CO2 to generate aurones is to date unknown. In this study, a palladium-catalyzed carbonylation of terminal aromatic alkynes and the waste hydrosilane, poly(methylhydrosiloxane) (PMHS), is carried out with 2-iodophenol using CO2 to produce aurones. A variety of terminal alkynes and substituted 2-iodophenols are transformed into aurones in good yields. Preliminary mechanistic studies indicate that silyl formate, generated from CO2 and PMHS, plays a crucial role in the carbonylation reaction.

15.
Nat Nanotechnol ; 18(5): 529-534, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823369

RESUMO

Light confinement in nanostructures produces an enhanced light-matter interaction that enables a vast range of applications including single-photon sources, nanolasers and nanosensors. In particular, nanocavity-confined polaritons display a strongly enhanced light-matter interaction in the infrared regime. This interaction could be further boosted if polaritonic modes were moulded to form whispering-gallery modes; but scattering losses within nanocavities have so far prevented their observation. Here, we show that hexagonal BN nanotubes act as an atomically smooth nanocavity that can sustain phonon-polariton whispering-gallery modes, owing to their intrinsic hyperbolic dispersion and low scattering losses. Hyperbolic whispering-gallery phonon polaritons on BN nanotubes of ~4 nm radius (sidewall of six atomic layers) are characterized by an ultrasmall nanocavity mode volume (Vm ≈ 10-10λ03 at an optical wavelength λ0 ≈ 6.4 µm) and a Purcell factor (Q/Vm) as high as 1012. We posit that BN nanotubes could become an important material platform for the realization of one-dimensional, ultrastrong light-matter interactions, with exciting implications for compact photonic devices.

16.
Small Methods ; 7(3): e2201311, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36605006

RESUMO

Precise control of the coordination structure of metal centers is an ideal approach to achieve reasonable selectivity, activity, and stability in the electrochemical reduction of CO2 . In this work, the KOH activation strategy for preparation of hierarchically porous material containing Ni single-atoms with axial-oxygen coordination is reported. Spectroscopic measurements reveal the multiple roles of KOH as oxygen source, pore-making reagent and promoter for the formation of key phthalocyanine structure. It exhibits superior surface area (1801 m2  g-1 ) and electrocatalytic performance (Faradaic efficiency of 94%, Turnover frequency of 11 362 h-1 ). Notably, KOH-enabled architecture with abundant pores benefits the anchoring of Ni atoms and mass transfer for high activity and selectivity. Density functional theory calculations suggest that the axial-oxygen ligand can promote the electronic delocalization of the Ni site for facilitating the *COOH formation and *CO desorption to efficiently produce CO.

17.
J Infect ; 86(2): e36-e39, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273641

RESUMO

We present the phylogeny, receptor binding property, growth in mammal cells and pathogenicity in mammal model of H3N8 viruses, which were isolated from wild birds in China. The human receptor preference and efficient replication in mice without prior adaption highlight that the H3N8 virus possesses the public threat potential.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Humanos , Camundongos , Aves , Animais Selvagens , China , Filogenia , Mamíferos
18.
JACS Au ; 2(11): 2522-2528, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465537

RESUMO

Cyanation of benzylic C-N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C-N cleavage of intermediates as ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved. Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized. Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant molecules.

19.
Nano Lett ; 22(15): 6207-6214, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905393

RESUMO

Light-matter interactions are commonly probed by optical spectroscopy, which, however, has some fundamental limitations such as diffraction-limited spatial resolution, tiny momentum transfer, and noncontinuous excitation/detection. In this work, through the use of scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) with ultrawide energy and momentum match and subnanometer spatial resolution, the longitudinal Fabry-Perot (FP) resonating modes and the transverse whispering-gallery modes (WGMs) in individual SiC nanowires are simultaneously excited and detected, which span from near-infrared (∼1.2 µm) to ultraviolet (∼0.2 µm) spectral regime, and the momentum transfer can range up to 108 cm-1. The size effects on the resonant spectra of nanowires are also revealed. This work provides an alternative technique to optical resonating spectroscopy and light-matter interactions in dielectric nanostructures, which is promising for modulating free electrons via photonic structures.

20.
ChemSusChem ; 15(10): e202200227, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35289483

RESUMO

Herein a carbon dioxide-promoted synthetic approach for the direct amidation between unactivated thioacid salts and amines under mild conditions was developed for a wide range of substrates. The method afforded amides in good to excellent yields under transition-metal-free and activation-reagent-free conditions, in sharp contrast to early methodologies on amide synthesis based on transition-metal catalysis. The method offered a greener and transition metal-free protocol applicable to pharmaceuticals preparations. Phenolic compounds were also found to be suitable acylation substrates with potassium thiosulfide KHS as the only byproduct. Moreover, this approach was applied to amide synthesis of valuable bio-active molecules such as moclobemide, melatonin, and a fungicide. Insights into the reaction mechanism involving carbon dioxide were provided through NMR spectroscopy and computational calculations. A plausible mechanism was proposed that involves weak interactions between carbon dioxide and potassium thioacetate in a dynamic equilibrium state formation of a six-membered ring.


Assuntos
Aminas , Sais , Acilação , Amidas , Aminas/química , Dióxido de Carbono/química , Catálise , Fenóis , Potássio , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA