Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 20636-20648, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018374

RESUMO

Current syntheses of CsPbBr3 halide perovskite nanocrystals (NCs) rely on overstoichiometric amounts of Pb2+ precursors, resulting in unreacted lead ions at the end of the process. In our synthesis scheme of CsPbBr3 NCs, we replaced excess Pb2+ with different exogenous metal cations (M) and investigated their effect on the synthesis products. These cations can be divided into two groups: group 1 delivers monodisperse CsPbBr3 cubes capped with oleate species (as for the case when Pb2+ is used in excess) and with a photoluminescence quantum yield (PLQY) as high as 90% with some cations (for example with M = In3+); group 2 yields irregularly shaped CsPbBr3 NCs with broad size distributions. In both cases, the addition of a tertiary ammonium cation (didodecylmethylammonium, DDMA+) during the synthesis, after the nucleation of the NCs, reshapes the NCs to monodisperse truncated cubes. Such NCs feature a mixed oleate/DDMA+ surface termination with PLQY values of up to 97%. For group 1 cations this happens only if the ammonium cation is directly added as a salt (DDMA-Br), while for group 2 cations this happens even if the corresponding tertiary amine (DDMA) is added, instead of DDMA-Br. This is attributed to the fact that only group 2 cations can facilitate the protonation of DDMA by the excess oleic acid present in the reaction environment. In all cases studied, the incorporation of M cations is marginal, and the reshaping of the NCs is only transient: if the reactions are run for a long time, the truncated cubes evolve to cubes.

2.
Nat Commun ; 15(1): 4899, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851762

RESUMO

Flexible control of the composition and morphology of nanocrystals (NCs) over a wide range is an essential technology for the creation of functional nanomaterials. Cation exchange (CE) is a facile method by which to finely tune the compositions of ionic NCs, providing an opportunity to obtain complex nanostructures that are difficult to form using conventional chemical synthesis procedures. However, due to their robust anion frameworks, CE cannot typically be used to modify the original morphology of the host NCs. In this study, we report an anisotropic morphological transformation of Cu1.8S NCs during CE. Upon partial CE of Cu1.8S nanoplates (NPLs) with Mn2+, the hexagonal NPLs are transformed into crescent-shaped Cu1.8S-MnS NPLs. Upon further CE, these crescent-shaped NPLs evolve back into completely hexagonal MnS NPLs. Comprehensive characterization of the intermediates reveals that this waxing-and-waning shape-evolution process is due to dissolution, redeposition, and intraparticle migration of Cu+ and S2-. Furthermore, in addition to Mn2+, this CE-induced transformation process occurs with Zn2+, Cd2+ and Fe3+. This finding presents a strategy by which to create heterostructured NCs with various morphologies and compositions under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA