Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 3677, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693167

RESUMO

Crystallization is a fundamental phenomenon which describes how the atomic building blocks such as atoms and molecules are arranged into ordered or quasi-ordered structure and form solid-state materials. While numerous studies have focused on the nucleation behavior, the precise and spatiotemporal control of growth kinetics, which dictates the defect density, the micromorphology, as well as the properties of the grown materials, remains elusive so far. Herein, we propose an optical strategy, termed optofluidic crystallithography (OCL), to solve this fundamental problem. Taking halide perovskites as an example, we use a laser beam to manipulate the molecular motion in the native precursor environment and create inhomogeneous spatial distribution of the molecular species. Harnessing the coordinated effect of laser-controlled local supersaturation and interfacial energy, we precisely steer the ionic reaction at the growth interface and directly print arbitrary single crystals of halide perovskites of high surface quality, crystallinity, and uniformity at a high printing speed of 102 µm s-1. The OCL technique can be potentially extended to the fabrication of single-crystal structures beyond halide perovskites, once crystallization can be triggered under the laser-directed local supersaturation.

2.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543614

RESUMO

African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities during infection, an investigation of shared immune responses in porcine alveolar macrophages (PAMs) after ASFV and PRRSV infections was lacking. In this study, we conducted a comparison using two single-cell transcriptomic datasets generated from PAMs under ASFV and PRRSV infection. Pattern recognition receptors (PRRs) RIG-I (DDX58), MDA5 (IFIH1), and LGP2 (DHX58) were identified as particularly recognizing ASFV and PRRSV, triggering cellular defense responses, including the upregulation of four cytokine families (CCL, CXCL, IL, and TNF) and the induction of pyroptosis. Through weighted gene co-expression network analysis and protein-protein interaction analysis, we identified thirteen gene and protein interactions shared by both scRNA-seq analyses, suggesting the ability to inhibit both ASFV and PRRSV viral replication. We discovered six proteins (PARP12, PARP14, HERC5, DDX60, RSAD2, and MNDA) in PAMs as inhibitors of ASFV and PRRSV replication. Collectively, our findings showed detailed characterizations of the immune responses in PAMs during ASFV and PRRSV infections, which may facilitate the treatments of these viral diseases.

3.
Genome Res ; 33(10): 1833-1847, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37914227

RESUMO

Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.


Assuntos
Cruzamento , Genoma , Humanos , Animais , Suínos , Variação Genética , Mamíferos
4.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769102

RESUMO

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

5.
Sci Bull (Beijing) ; 68(15): 1632-1639, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429776

RESUMO

Atomically thin oxide magnetic materials are highly desirable due to the promising potential to integrate two-dimensional (2D) magnets into next-generation spintronics. Therefore, 2D oxide magnetism is expected to be effectively tuned by the magnetic and electrical fields, holding prospective for future low-dissipation electronic devices. However, the electric-field control of 2D oxide monolayer magnetism has rarely been reported. Here, we present the realization of 2D monolayer magnetism in oxide (SrRuO3)1/(SrTiO3)N (N = 1, 3) superlattices that shows an efficient and reversible phase transition through electric-field controlled proton (H+) evolution. By using ionic liquid gating to modulate the proton concentration in (SrRuO3)1/(SrTiO3)1 superlattice, an electric-field induced metal-insulator transition was observed, along with gradually suppressed magnetic ordering and modulated magnetic anisotropy. Theoretical analysis reveals that proton intercalation plays a crucial role in both electronic and magnetic phase transitions. Strikingly, SrTiO3 layers can act as a proton sieve, which have a significant influence on proton evolution. Our work stimulates the tuning functionality of 2D oxide monolayer magnetism by voltage control, providing potential for future energy-efficient electronics.

6.
Animals (Basel) ; 13(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830509

RESUMO

Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558207

RESUMO

By combining X-ray micro-computed tomography with mercury porosimetry, the evolution of the oxygen supply, porous structure, mass loss and oxidized compositions were investigated to characterize the oxidation behavior of fine-grained graphite ET-10, regarding the geometry of the specimen and its oxidation temperature. Here, the porous structure and the gas flows out of and into the porous structure were comprehensively compared for two kinds of specimens-large pure graphite (D = H = 25.4 mm), oxidized at a test facility based on ASTM D7542, and small partially SiC-coated graphite (D ≈ 1 mm and H = 1.95 mm), oxidized in the bottom section of a U-type tube. The fine grains and large geometry resulted in small pores and long flow distances, which exhausted the oxygen in the small stream to the interior of the specimen, making its oxidation deviate from the kinetics-controlled regime. In addition, the well-known three-regime theory was reasonably reinterpreted regarding the oxidation of different compositions, binders and fillers. The kinetics-controlled uniform oxidation mainly oxidizing binders is restricted by their limited contents, while the rate of surface-dominated oxidation increases continuously via the consumption of more fillers. Furthermore, we proposed a new design for the test facility used for the oxidation experiment, wherein a partially shielded millimeter specimen can be oxidized in the long straight bottom section of a U-tube, and this will be discussed further in related future studies.

8.
Science ; 377(6610): 1112-1116, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048954

RESUMO

Three-dimensional (3D) laser nanoprinting allows maskless manufacturing of diverse nanostructures with nanoscale resolution. However, 3D manufacturing of inorganic nanostructures typically requires nanomaterial-polymer composites and is limited by a photopolymerization mechanism, resulting in a reduction of material purity and degradation of intrinsic properties. We developed a polymerization-independent, laser direct writing technique called photoexcitation-induced chemical bonding. Without any additives, the holes excited inside semiconductor quantum dots are transferred to the nanocrystal surface and improve their chemical reactivity, leading to interparticle chemical bonding. As a proof of concept, we printed arbitrary 3D quantum dot architectures at a resolution beyond the diffraction limit. Our strategy will enable the manufacturing of free-form quantum dot optoelectronic devices such as light-emitting devices or photodetectors.

9.
Chem Soc Rev ; 51(10): 4000-4022, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35477783

RESUMO

Layered semiconductors, represented by transition metal dichalcogenides, have attached extensive attention due to their unique and tunable electrical and optical properties. In particular, lateral layered semiconductor multijunctions, including homojunctions, heterojunctions, hybrid junctions and superlattices, present a totally new degree of freedom in research on electronic devices beyond traditional materials and their structures, providing unique opportunities for the development of new structures and operation principle-based high performance devices. However, the advances in this field are limited by the precise synthesis of high-quality junctions and greatly hampered by ambiguous device performance limits. Herein, we review the recent key breakthroughs in the design, synthesis, electronic structure and property modulation of lateral semiconductor multijunctions and focus on their application-specific devices. Specifically, the synthesis methods based on different principles, such as chemical and external source-induced methods, are introduced stepwise for the controllable fabrication of semiconductor multijunctions as the basics of device application. Subsequently, their structure and property modulation are discussed, including control of their electronic structure, exciton dynamics and optical properties before the fabrication of lateral layered semiconductor multijunction devices. Precise property control will potentially result in outstanding device performances, including high-quality diodes and FETs, scalable logic and analog circuits, highly efficient optoelectronic devices, and unique electrochemical devices. Lastly, we focus on several of the most essential but unresolved debates in this field, such as the true advantages of few-layer vs. monolayer multijunctions, how sharp the interface should be for specific functional devices, and the superiority of lateral multijunctions over vertical multijunctions, highlighting the next-phase strategy to enhance the performance potential of lateral multijunction devices.

10.
PLoS Genet ; 16(8): e1008995, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833967

RESUMO

Pan-genomic open reading frames (ORFs) potentially carry protein-coding gene or coding variant information in a population. In this study, we suggest that pan-genomic ORFs are promising to be utilized in estimation of heritability and genomic prediction. A Saccharomyces cerevisiae dataset with whole-genome SNPs, pan-genomic ORFs, and the copy numbers of those ORFs is used to test the effectiveness of ORF data as a predictor in three prediction models for 35 traits. Our results show that the ORF-based heritability can capture more genetic effects than SNP-based heritability for all traits. Compared to SNP-based genomic prediction (GBLUP), pan-genomic ORF-based genomic prediction (OBLUP) is distinctly more accurate for all traits, and the predictive abilities on average are more than doubled across all traits. For four traits, the copy number of ORF-based prediction(CBLUP) is more accurate than OBLUP. When using different numbers of isolates in training sets in ORF-based prediction, the predictive abilities for all traits increased as more isolates are added in the training sets, suggesting that with very large training sets the prediction accuracy will be in the range of the square root of the heritability. We conclude that pan-genomic ORFs have the potential to be a supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction.


Assuntos
Genoma/genética , Genômica , Fases de Leitura Aberta/genética , Locos de Características Quantitativas/genética , Animais , Cruzamento , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Sci Rep ; 9(1): 4571, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872639

RESUMO

The successful synthesis of the single to few layer transition metal dichalcogenides has opened a new era in the nanoelectronics. For their efficient implementations in the electronic devices while taking care of their overheating issues, the characterization of their thermal transport properties is extremely vital. So, we have systematically investigated the thermal transport properties of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) by combining the first-principles calculations with Boltzmann transport equation. We find that monolayer WTe2 possesses the lowest lattice thermal conductivity κL (33:66 Wm-1K-1 at 300 K) among these six semiconducting materials, in contrast to the highest κL (113:97 Wm-1K-1 at 300 K) of WS2 among them. Further analyses reveal that the higher (lower) anharmonic and isotopic scatterings together with the lower (higher) phonon group velocities lead to the lowest (highest) value of κL in WTe2 (WS2) monolayer. In addition, we have also calculated the cumulative thermal conductivity κC as a function of mean free path, which indicates that the nanostructures with the length of about 400 nm would reduce κL drastically. These results offer important understanding from thermal conductivity point of view to design the 2D transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) electronics.

12.
Front Genet ; 10: 126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858865

RESUMO

Gene expression profiles potentially hold valuable information for the prediction of breeding values and phenotypes. In this study, the utility of transcriptome data for phenotype prediction was tested with 185 inbred lines of Drosophila melanogaster for nine traits in two sexes. We incorporated the transcriptome data into genomic prediction via two methods: GTBLUP and GRBLUP, both combining single nucleotide polymorphisms (SNPs) and transcriptome data. The genotypic data was used to construct the common additive genomic relationship, which was used in genomic best linear unbiased prediction (GBLUP) or jointly in a linear mixed model with a transcriptome-based linear kernel (GTBLUP), or with a transcriptome-based Gaussian kernel (GRBLUP). We studied the predictive ability of the models and discuss a concept of "omics-augmented broad sense heritability" for the multi-omics era. For most traits, GRBLUP and GBLUP provided similar predictive abilities, but GRBLUP explained more of the phenotypic variance. There was only one trait (olfactory perception to Ethyl Butyrate in females) in which the predictive ability of GRBLUP (0.23) was significantly higher than the predictive ability of GBLUP (0.21). Our results suggest that accounting for transcriptome data has the potential to improve genomic predictions if transcriptome data can be included on a larger scale.

13.
Anim Genet ; 49(6): 579-591, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30324759

RESUMO

Inbreeding, which has several causes including genetic drift, population bottlenecks, mating of close relatives and selection, can leave tracts of runs of homozygosity (ROH) along genomes. Recently, decreasing performance on reproductive traits, which might have resulted from inbreeding, has been observed in Chinese pigs. In this study, 830 individuals from Western and Chinese pig breeds were genotyped using the reduced-representation sequencing method. After imputation and quality control, 60 850 high-confidence SNPs were retained for ROH detection. A simulation was performed to explore the reliability of ROH detection with imputed data. Different ROH-related variables were compared between imputed and non-missing genotypes used in ROH detection. Furthermore, ROH islands were evaluated and annotated to find genes influenced by inbreeding in these pigs. The simulation results showed that imputed data with 0.7 as the average missing genotype rate and three heterozygotes allowed in a sliding window have comparable ROH detected compared with data with no missing genotypes. Compared with Western pig breeds, Chinese pigs had more autosomes covered by ROH longer than 5 Mb, indicating higher inbreeding in Chinese pigs in recent times. Genes related to reproduction, immunity, meat quality and adaptability in Chinese pigs and several genes related to growth speed and immunity in Western pigs were observed in short ROH islands. The reproduction-related gene PRM1 was found to be located in the most frequent long ROH island in Chinese pigs, which might explain the decreasing fertility in Chinese pig breeds.


Assuntos
Cruzamento , Genoma , Sus scrofa/genética , Animais , China , Genética Populacional , Genótipo , Homozigoto , Endogamia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
14.
Sci Rep ; 8(1): 13352, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190566

RESUMO

The differences in artificial and natural selection have been some of the factors contributing to phenotypic diversity between Chinese and western pigs. Here, 830 individuals from western and Chinese pig breeds were genotyped using the reduced-representation genotyping method. First, we identified the selection signatures for different pig breeds. By comparing Chinese pigs and western pigs along the first principal component, the growth gene IGF1R; the immune genes IL1R1, IL1RL1, DUSP10, RAC3 and SWAP70; the meat quality-related gene SNORA50 and the olfactory gene OR1F1 were identified as candidate differentiated targets. Further, along a principal component separating Pudong White pigs from others, a potential causal gene for coat colour (EDNRB) was discovered. In addition, the divergent signatures evaluated by Fst within Chinese pig breeds found genes associated with the phenotypic features of coat colour, meat quality and feed efficiency among these indigenous pigs. Second, admixture and genomic introgression analysis were performed. Shan pigs have introgressed genes from Berkshire, Yorkshire and Hongdenglong pigs. The results of introgression mapping showed that this introgression conferred adaption to the local environment and coat colour of Chinese pigs and the superior productivity of western pigs.


Assuntos
Cruzamento , Genoma , Suínos/genética , Animais , China , Feminino , Masculino , Especificidade da Espécie
15.
Sci Rep ; 8(1): 13400, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194326

RESUMO

The effects of different parameters on oxidation rate are non-linear, interactive and diversified in which the change of adequacy of O2 supply is an important indicator. The influence of microstructure on oxidation rate became stronger worsening the fitting linearity to calculate the activation energy based on present method with the decreased adequacy of O2 supply due to the increase of temperature, the decrease of gas flow rate, etc. Here, we proposed a method to characterize thermal-oxidation behaviors of nuclear graphite by combining O2 supply and micro surface area of graphite. The proposed method improved the linearity and reduced the standard error of Arrhenius plots of oxidized graphite IG-110 (10 L/min reactant gas) and ET-10 (0.2 L/min reactant gas). The value of activation energy of graphite IG-110 oxidized under ASTM D7542 condition is calculated as 220 kJ/mol by this method echoing the results of previous studies with sufficient O2 supply. For the conditions with less O2 supply at low gas flow rate and/or high temperature, the change of microstructure of oxidized graphite should be obtained as an important factor influencing oxidation rate of graphite.

16.
Nat Commun ; 9(1): 2902, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026465

RESUMO

The original HTML version of this Article omitted to list Zhengcao Li as a corresponding author. Correspondingly, the original PDF version of this Article incorrectly stated that 'Correspondence and requests for materials should be addressed to M.W. (email: m.wagemaker@tudelft.nl)', instead of the correct 'Correspondence and requests for materials should be addressed to Z.L. (email: zcli@tsinghua.edu.cn) or to M.W. (email: m.wagemaker@tudelft.nl)'. This has been corrected in both the PDF and HTML versions of the Article.

17.
Nat Commun ; 9(1): 2152, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858568

RESUMO

Electrical mobility demands an increase of battery energy density beyond current lithium-ion technology. A crucial bottleneck is the development of safe and reversible lithium-metal anodes, which is challenged by short circuits caused by lithium-metal dendrites and a short cycle life owing to the reactivity with electrolytes. The evolution of the lithium-metal-film morphology is relatively poorly understood because it is difficult to monitor lithium, in particular during battery operation. Here we employ operando neutron depth profiling as a noninvasive and versatile technique, complementary to microscopic techniques, providing the spatial distribution/density of lithium during plating and stripping. The evolution of the lithium-metal-density-profile is shown to depend on the current density, electrolyte composition and cycling history, and allows monitoring the amount and distribution of inactive lithium over cycling. A small amount of reversible lithium uptake in the copper current collector during plating and stripping is revealed, providing insights towards improved lithium-metal anodes.

18.
RSC Adv ; 8(20): 11070-11077, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541539

RESUMO

Molybdenum disulfide/porous silicon nanowire (MoS2/PSiNW) heterojunctions with different thicknesses as highly-responsive NO2 gas sensors were obtained in the present study. Porous silicon nanowires were fabricated using metal-assisted chemical etching, and seeded with different thicknesses. After that, MoS2 nanosheets were synthesized by sulfurization of direct-current (DC)-magnetic-sputtering Mo films on PSiNWs. Compared with the as-prepared PSiNWs and MoS2, the MoS2/PSiNW heterojunctions exhibited superior gas sensing properties with a low detection concentration of 1 ppm and a high response enhancement factor of ∼2.3 at room temperature. The enhancement of the gas sensitivity was attributed to the layered nanostructure, which induces more active sites for the absorption of NO2, and modulation of the depletion layer width at the interface. Further, the effects of the deposition temperature in the chemical vapor deposition (CVD) process on the gas sensing properties were also discussed, and might be connected to the nucleation and growth of MoS2 nanosheets. Our results indicate that MoS2/PSiNW heterojunctions might be a good candidate for constructing high-performance NO2 sensors for various applications.

19.
Sci Rep ; 7(1): 11622, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912472

RESUMO

A new structure of honeycomb-like ZnO mesoporous nanowall arrays (MNWAs) with highly efficient photocatalytic activity was designed and successfully synthesized on Al foil by hydrothermal method. The nanowalls of ZnO-MNWAs have mesopores, which possess a large surface area. The visible light absorption of ZnO-MNWAs was efficiently stronger than ZnO nanowire, resulting in that the photocatalytic activity of ZnO-MNWAs, whose bandgap energy was 3.12 eV, was 5.97 times than that of ZnO nanowires in the degradation of methyl orange. Besides, Al foil acted as a good electron conductor which was beneficial to the separation of photo-induced electron-hole pairs. After modifying ZnO-MNWAs with a proper amount of Ag nanoparticles (NPs), photocatalytic activity could be further enhanced. The photocatalytic activity of ZnO-MNWAs with the optimal amount of Ag NPs was 9.08 times than that of ZnO nanowires and 1.52 times than that of pure ZnO-MNWAs.

20.
Nanomaterials (Basel) ; 7(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28336854

RESUMO

In this research, ZnO nanowires doped with Mn2+ and Co2+ ions were synthesized through a facile and inexpensive hydrothermal approach, in which Mn2+ and Co2+ ions successfully substituted Zn2+ in the ZnO crystal lattice without changing the morphology and crystalline structure of ZnO. The atomic percentages of Mn and Co were 6.29% and 1.68%, respectively, in the doped ZnO nanowires. The photocatalytic results showed that Mn-doped and Co-doped ZnO nanowires both exhibited higher photocatalytic activities than undoped ZnO nanowires. Among the doped ZnO nanowires, Co-doped ZnO, which owns a twice active visible-light photocatalytic performance compared to pure ZnO, is considered a more efficient photocatalyst material. The enhancement of its photocatalytic performance originates from the doped metal ions, which enhance the light absorption ability and inhibit the recombination of photo-generated electron-hole pairs as well. The effect of the doped ion types on the morphology, crystal lattice and other properties of ZnO was also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA