Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2314802121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498715

RESUMO

The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.


Assuntos
Células Ependimogliais , MAP Quinases Reguladas por Sinal Extracelular , Animais , Camundongos , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Ependimogliais/metabolismo , Proliferação de Células , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Crescimento de Fibroblastos , Mamíferos/metabolismo
2.
Protein Cell ; 15(1): 21-35, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300483

RESUMO

The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.


Assuntos
Células Ependimogliais , Proteínas Hedgehog , Animais , Camundongos , Humanos , Células Ependimogliais/metabolismo , Proteínas Hedgehog/metabolismo , Furões/metabolismo , Córtex Cerebral , Neurogênese , Mamíferos/metabolismo , Neuroglia/metabolismo , Proteína Morfogenética Óssea 7/metabolismo
3.
Sci Adv ; 9(45): eadi2167, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948517

RESUMO

In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.


Assuntos
Glioma , Neurogênese , Animais , Neurogênese/genética , Diferenciação Celular/genética , Neuroglia/metabolismo , Carcinogênese/genética , Glioma/genética , Transformação Celular Neoplásica/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Mamíferos/metabolismo
4.
Front Cell Dev Biol ; 10: 948331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081908

RESUMO

The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of Zfp503. Furthermore, scRNA-seq revealed that the transcription factor Zfp503 affects the differentiation of these progenitor cells in the lateral ganglionic eminence (LGE). More importantly, we found that the transcription factors Sp8/9, which are required for the differentiation of D2 MSNs, are repressed by Zfp503. Finally, sustained Zfp503 expression in LGE progenitor cells promoted the D1 MSN identity and repressed the D2 MSN identity. Overall, our findings indicated that Zfp503 promotes the D1 MSN identity and represses the D2 MSN identity by regulating Sp8/9 expression during striatal MSN development.

5.
Cell Death Discov ; 8(1): 301, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773249

RESUMO

The striatum is the main input structure of the basal ganglia, receiving information from the cortex and the thalamus and consisting of D1- and D2- medium spiny neurons (MSNs). D1-MSNs and D2-MSNs are essential for motor control and cognitive behaviors and have implications in Parkinson's Disease. In the present study, we demonstrated that Sp9-positive progenitors produced both D1-MSNs and D2-MSNs and that Sp9 expression was rapidly downregulated in postmitotic D1-MSNs. Furthermore, we found that sustained Sp9 expression in lateral ganglionic eminence (LGE) progenitor cells and their descendants led to promoting D2-MSN identity and repressing D1-MSN identity during striatal development. As a result, sustained Sp9 expression resulted in an imbalance between D1-MSNs and D2-MSNs in the mouse striatum. In addition, the fate-changed D2-like MSNs survived normally in adulthood. Taken together, our findings supported that Sp9 was sufficient to promote D2-MSN identity and repress D1-MSN identity, and Sp9 was a negative regulator of D1-MSN fate.

6.
Neurosci Bull ; 38(1): 47-68, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34374948

RESUMO

Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.


Assuntos
Astrócitos , Oligodendroglia , Diferenciação Celular , Córtex Cerebral , Humanos , Neuroglia
7.
Neurosci Bull ; 37(7): 985-998, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34014554

RESUMO

Medium spiny neurons (MSNs) in the striatum, which can be divided into D1 and D2 MSNs, originate from the lateral ganglionic eminence (LGE). Previously, we reported that Six3 is a downstream target of Sp8/Sp9 in the transcriptional regulatory cascade of D2 MSN development and that conditionally knocking out Six3 leads to a severe loss of D2 MSNs. Here, we showed that Six3 mainly functions in D2 MSN precursor cells and gradually loses its function as D2 MSNs mature. Conditional deletion of Six3 had little effect on cell proliferation but blocked the differentiation of D2 MSN precursor cells. In addition, conditional overexpression of Six3 promoted the differentiation of precursor cells in the LGE. We measured an increase of apoptosis in the postnatal striatum of conditional Six3-knockout mice. This suggests that, in the absence of Six3, abnormally differentiated D2 MSNs are eliminated by programmed cell death. These results further identify Six3 as an important regulatory element during D2 MSN differentiation.


Assuntos
Genes Homeobox , Neurônios , Animais , Diferenciação Celular , Corpo Estriado/metabolismo , Proteínas do Olho , Proteínas de Homeodomínio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Proteína Homeobox SIX3
8.
Mol Neurobiol ; 58(8): 3729-3744, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33821423

RESUMO

Specification of the progenitors' regional identity is a pivotal step during development of the cerebral cortex and basal ganglia. The molecular mechanisms underlying progenitor regionalization, however, are poorly understood. Here we showed that the transcription factor Vax1 was highly expressed in the developing subpallium. In its absence, the RNA-Seq analysis, in situ RNA hybridization, and immunofluorescence staining results showed that the cell proliferation was increased in the subpallium, but the neuronal differentiation was blocked. Moreover, the dLGE expands ventrally, and the vLGE, MGE, and septum get smaller. Finally, overexpressed VAX1 in the LGE progenitors strongly inhibits Gsx2 expression. Taken together, our findings show that Vax1 is crucial for subpallium regionalization by repressing Gsx2.


Assuntos
Corpo Estriado/embriologia , Corpo Estriado/metabolismo , Globo Pálido/embriologia , Globo Pálido/metabolismo , Proteínas de Homeodomínio/biossíntese , Neuropeptídeos/biossíntese , Animais , Corpo Estriado/citologia , Globo Pálido/citologia , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuropeptídeos/genética
9.
Cell Death Dis ; 12(3): 262, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712552

RESUMO

The striatum is structurally highly diverse, and its organ functionality critically depends on normal embryonic development. Although several studies have been conducted on the gene functional changes that occur during striatal development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive transcriptome profile that allows us to explore the trajectory of striatal development and identify the correlation between the striatal development and Huntington's disease (HD). Furthermore, we applied an integrative transcriptomic profiling approach based on machine learning to systematically map a global landscape of 277 transcription factor (TF) networks. Most of these TF networks are linked to biological processes, and some unannotated genes provide information about the corresponding mechanisms. For example, we found that the Meis2 and Six3 were crucial for the survival of striatal neurons, which were verified using conditional knockout (CKO) mice. Finally, we used RNA-Seq to speculate their downstream targets.


Assuntos
Apoptose , Corpo Estriado/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Huntington/genética , Doença de Huntington/patologia , Fatores de Transcrição/genética , Transcriptoma , Animais , Estudos de Casos e Controles , Bases de Dados Genéticas , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Humanos , Aprendizado de Máquina , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fenótipo , RNA-Seq , Proteína Homeobox SIX3
10.
Neurosci Bull ; 37(4): 440-460, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33606177

RESUMO

Mouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.5, neocortical RGCs start to generate ASCL1+EGFR+ apical multipotent intermediate progenitors (MIPCs), which then differentiate into basal MIPCs that express ASCL1, EGFR, OLIG2, and MKI67. These basal MIPCs undergo several rounds of divisions to generate most of the cortical oligodendrocytes and astrocytes and a subpopulation of OB interneurons. Finally, single-cell ATAC-Seq supported our model for the genetic logic underlying the specification and differentiation of cortical glial cells and OB interneurons. Taken together, this work reveals the process of cortical radial glial cell lineage progression and the developmental origins of cortical astrocytes and oligodendrocytes.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Diferenciação Celular , Camundongos , Neuroglia , Oligodendroglia
11.
Cell Rep ; 30(13): 4490-4504.e4, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234482

RESUMO

Neural stem cells (NSCs) in the prenatal neocortex progressively generate different subtypes of glutamatergic projection neurons. Following that, NSCs have a major switch in their progenitor properties and produce γ-aminobutyric acid (GABAergic) interneurons for the olfactory bulb (OB), cortical oligodendrocytes, and astrocytes. Herein, we provide evidence for the molecular mechanism that underlies this switch in the state of neocortical NSCs. We show that, at around E16.5, mouse neocortical NSCs start to generate GSX2-expressing (GSX2+) intermediate progenitor cells (IPCs). In vivo lineage-tracing study revealed that GSX2+ IPC population gives rise not only to OB interneurons but also to cortical oligodendrocytes and astrocytes, suggesting that they are a tri-potential population. We demonstrated that Sonic hedgehog signaling is both necessary and sufficient for the generation of GSX2+ IPCs by reducing GLI3R protein levels. Using single-cell RNA sequencing, we identify the transcriptional profile of GSX2+ IPCs and the process of the lineage switch of cortical NSCs.


Assuntos
Linhagem da Célula , Proteínas Hedgehog/metabolismo , Neocórtex/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/metabolismo , Interneurônios/citologia , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Bulbo Olfatório/citologia , Oligodendroglia/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Reprodutibilidade dos Testes , Proteína Gli3 com Dedos de Zinco/metabolismo
12.
J Comp Neurol ; 527(17): 2860-2874, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070778

RESUMO

Cortical interneurons are derived from the subcortical medial ganglionic eminence (MGE), caudal ganglionic eminence (CGE) and preoptic area (POA). CGE-derived cortical interneurons, which comprise around 30% of all cortical interneurons, mainly express Htr3a, calretinin (CR), Reelin (RELN) and vasoactive intestinal polypeptide (VIP). In the present study, we show that transcription factors Sp8 and Sp9 are co-expressed in the subventricular zone (SVZ) of the dorsal CGE. Conditional knockout of Sp8/9 using the Gsx2-Cre transgenic line results in severe loss of CGE-derived cortical interneurons. We observed migration defects of Sp8/9 double mutant CGE-derived cortical interneurons as they had longer leading processes than controls and they ectopically accumulated in the CGE. Dlx5/6-CIE conditional deletion of Sp8/9 also leads to a significant reduction in the CGE-derived cortical interneurons. We provide evidence that Sp8/9 coordinately regulate CGE-derived cortical interneuron development in part through repressing the expression of Pak3, Robo1, and Slit1. Finally, we show that Cxcl14, a member of the CXC chemokine family, is mainly expressed in CGE-derived interneurons in cortical layers I and II, and its expression is critically dependent on SP8.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Movimento Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Interneurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Quimiocinas CXC/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Proteína Reelina , Nicho de Células-Tronco/fisiologia
13.
J Comp Neurol ; 527(18): 2931-2947, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132148

RESUMO

Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) to the olfactory bulb (OB). The PROK2 (prokineticin 2) and PROKR2 (prokineticin receptor 2) signaling pathway has been identified to cause human Kallmann syndrome, a developmental disease that associates hypogonadism with anosmia (OB developmental defects). However, the identities and properties of PROK2+ and PROKR2+ cells in the SVZ-RMS-OB remain largely unknown. Here we examine the expression patterns of Prok2 and Prokr2 in the SVZ-RMS-OB using Prok2EGFP transgenic and Prokr2LacZ/+ knockin mice. Our results show that Prokr2 is expressed in postmitotic immature interneurons in the SVZ-RMS-OB. Prok2 is not expressed in the SVZ, but a few PROK2+ cells are found in the medial part of the RMS; they are not neural progenitors or migrating neuroblasts. In the OB, Prok2 is expressed in a subset of granule cells and tufted cells, but no coexpression of Prok2 and Prokr2 in the OB cells is observed. In Prok2 and Prokr2 mutant mice, severe tangential and radial migration defects of neuroblasts in the SVZ-RMS-OB result in loss of ~75% of GABAergic interneurons in the OB. These analyses demonstrate that PROK2/PROKR2 signaling is crucial for the tangential and radial migration of OB interneurons.


Assuntos
Movimento Celular/fisiologia , Hormônios Gastrointestinais/biossíntese , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neuropeptídeos/biossíntese , Bulbo Olfatório/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores de Peptídeos/biossíntese , Animais , Hormônios Gastrointestinais/genética , Interneurônios/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/química , Neuropeptídeos/genética , Bulbo Olfatório/química , Bulbo Olfatório/citologia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de Sinais/fisiologia
14.
Front Mol Neurosci ; 12: 75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001083

RESUMO

Cortical interneurons are derived from the subpallium and reach the developing cortex through long tangential migration. Mature cortical interneurons are characterized by remarkable morphological, molecular, and functional diversity. The calcium-binding protein parvalbumin (PV) and neuropeptide somatostatin (SST) identify most medial ganglionic eminence (MGE)-derived cortical interneurons. Previously, we demonstrated that Sp9 plays a curial transcriptional role in regulating MGE-derived cortical interneuron development. Here, we show that SP8 protein is weekly expressed in the MGE mantle zone of wild type mice but upregulated in Sp9 null mutants. PV+ cortical interneurons were severely lost in Sp8/Sp9 double conditional knockouts due to defects in tangential migration compared with Sp9 single mutants, suggesting that Sp8/9 coordinately regulate PV+ cortical interneuron development. We provide evidence that Sp8/Sp9 activity is required for normal MGE-derived cortical interneuron migration, at least in part, through regulating the expression of EphA3, Ppp2r2c, and Rasgef1b.

15.
Cereb Cortex ; 29(11): 4831-4849, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30796806

RESUMO

Generation of olfactory bulb (OB) interneurons requires neural stem/progenitor cell specification, proliferation, differentiation, and young interneuron migration and maturation. Here, we show that the homeobox transcription factors Dlx1/2 are central and essential components in the transcriptional code for generating OB interneurons. In Dlx1/2 constitutive null mutants, the differentiation of GSX2+ and ASCL1+ neural stem/progenitor cells in the dorsal lateral ganglionic eminence is blocked, resulting in a failure of OB interneuron generation. In Dlx1/2 conditional mutants (hGFAP-Cre; Dlx1/2F/- mice), GSX2+ and ASCL1+ neural stem/progenitor cells in the postnatal subventricular zone also fail to differentiate into OB interneurons. In contrast, overexpression of Dlx1&2 in embryonic mouse cortex led to ectopic production of OB-like interneurons that expressed Gad1, Sp8, Sp9, Arx, Pbx3, Etv1, Tshz1, and Prokr2. Pax6 mutants generate cortical ectopia with OB-like interneurons, but do not do so in compound Pax6; Dlx1/2 mutants. We propose that DLX1/2 promote OB interneuron development mainly through activating the expression of Sp8/9, which further promote Tshz1 and Prokr2 expression. Based on this study, in combination with earlier ones, we propose a transcriptional network for the process of OB interneuron development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/embriologia , Neocórtex/metabolismo , Bulbo Olfatório/embriologia
16.
Cereb Cortex ; 29(6): 2653-2667, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878134

RESUMO

Immature neurons generated by the subpallial MGE tangentially migrate to the cortex where they become parvalbumin-expressing (PV+) and somatostatin (SST+) interneurons. Here, we show that the Sp9 transcription factor controls the development of MGE-derived cortical interneurons. SP9 is expressed in the MGE subventricular zone and in MGE-derived migrating interneurons. Sp9 null and conditional mutant mice have approximately 50% reduction of MGE-derived cortical interneurons, an ectopic aggregation of MGE-derived neurons in the embryonic ventral telencephalon, and an increased ratio of SST+/PV+ cortical interneurons. RNA-Seq and SP9 ChIP-Seq reveal that SP9 regulates MGE-derived cortical interneuron development through controlling the expression of key transcription factors Arx, Lhx6, Lhx8, Nkx2-1, and Zeb2 involved in interneuron development, as well as genes implicated in regulating interneuron migration Ackr3, Epha3, and St18. Thus, Sp9 has a central transcriptional role in MGE-derived cortical interneuron development.


Assuntos
Córtex Cerebral/citologia , Interneurônios/citologia , Eminência Mediana/embriologia , Neurogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Interneurônios/metabolismo , Eminência Mediana/citologia , Camundongos , Fatores de Transcrição/metabolismo
17.
Development ; 145(14)2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29967281

RESUMO

Dopamine receptor DRD1-expressing medium spiny neurons (D1 MSNs) and dopamine receptor DRD2-expressing medium spiny neurons (D2 MSNs) are the principal projection neurons in the striatum, which is divided into dorsal striatum (caudate nucleus and putamen) and ventral striatum (nucleus accumbens and olfactory tubercle). Progenitors of these neurons arise in the lateral ganglionic eminence (LGE). Using conditional deletion, we show that mice lacking the transcription factor genes Sp8 and Sp9 lose virtually all D2 MSNs as a result of reduced neurogenesis in the LGE, whereas D1 MSNs are largely unaffected. SP8 and SP9 together drive expression of the transcription factor Six3 in a spatially restricted domain of the LGE subventricular zone. Conditional deletion of Six3 also prevents the formation of most D2 MSNs, phenocopying the Sp8/9 mutants. Finally, ChIP-Seq reveals that SP9 directly binds to the promoter and a putative enhancer of Six3 Thus, this study defines components of a transcription pathway in a regionally restricted LGE progenitor domain that selectively drives the generation of D2 MSNs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fatores de Transcrição/genética , Proteína Homeobox SIX3
18.
J Tissue Eng Regen Med ; 11(8): 2250-2260, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-26777754

RESUMO

To advance molecular and cellular therapy into the clinic for peripheral nerve injury, modification of neural scaffolds with the extracellular matrix (ECM) of peripheral nerves has been established as a promising alternative to direct inclusion of support cells and/or growth factors within a neural scaffold, while cell-derived ECM proves to be superior to tissue-derived ECM in the modification of neural scaffolds. Based on the fact that bone marrow mesenchymal stem cells (BMSCs), just like Schwann cells, are adopted as support cells within a neural scaffold, in this study we used BMSCs as parent cells to generate ECM for application in peripheral nerve tissue engineering. A chitosan nerve guidance conduit (NGC) and silk fibroin filamentous fillers were respectively prepared for co-culture with purified BMSCs, followed by decellularization to stimulate ECM deposition. The ECM-modified NGC and lumen fillers were then assembled into a chitosan-silk fibroin-based, BMSC-derived, ECM-modified neural scaffold, which was implanted into rats to bridge a 10 mm-long sciatic nerve gap. Histological and functional assessments after implantation showed that regenerative outcomes achieved by our engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of BMSC-derived ECM for peripheral nerve repair. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Células da Medula Óssea/metabolismo , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Nervos Periféricos/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Células da Medula Óssea/patologia , Quitosana/química , Matriz Extracelular/metabolismo , Fibroínas/química , Células-Tronco Mesenquimais/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley
19.
Neural Regen Res ; 11(1): 168-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26981108

RESUMO

Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 µm. The blood vessels with diameters from 27 to 155 µm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo.

20.
Biomaterials ; 35(7): 2253-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24360577

RESUMO

Extracellular matrix (ECM) plays a prominent role in establishing and maintaining an ideal microenvironment for tissue regeneration, and ECM scaffolds are used as a feasible alternative to cellular and molecular therapy in the fields of tissue engineering. Because of their advantages over tissue-derived ECM scaffolds, cultured cell-derived ECM scaffolds are beginning to attract attention, but they have been scarcely studied for peripheral nerve repair. Here we aimed to develop a tissue engineered nerve scaffold by reconstituting nerve cell-derived ECM with natural biomaterials. A protocol was adopted to prepare and characterize the cultured Schwann cell (SC)-derived ECM. A chitosan conduit and silk fibroin (SF) fibers were prepared, cultured with SCs for ECM deposition, and subjected to decellularization, followed by assembly into a chitosan/SF-based, SC-derived ECM-modified scaffold, which was used to bridge a 10 mm rat sciatic nerve gap. The results from morphological analysis as well as electrophysiological examination indicated that regenerative outcomes achieved by our developed scaffold were similar to those by an acellular nerve graft (namely a nerve tissue-derived ECM scaffold), but superior to those by a plain chitosan/SF scaffold. Moreover, blood and histopathological parameters confirmed the safety of scaffold modification by SC-derived ECM. Therefore, a hybrid scaffold based on joint use of acellular and classical biomaterials represents a promising approach to nerve tissue engineering.


Assuntos
Quitosana/química , Matriz Extracelular/química , Fibroínas/química , Células de Schwann/citologia , Nervo Isquiático/fisiologia , Seda/química , Animais , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA