Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1429065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027104

RESUMO

As an essential component of the fungal cell wall, ß-1,6-glucan has an important role in the growth and development of fungi, but its distribution has not been investigated in Magnaporthe oryzae. Here, a novel ß-1,6-glucanase from M. oryzae, MoGlu16, was cloned and expressed in Pichia pastoris. The enzyme was highly active on pustulan, with a specific activity of 219.0 U/mg at pH 5.0 and 50°C, and showed great selectivity for continuous ß-1,6-glycosidic bonding polysaccharides. Based on this, ß-1,6-glucan was selectively visualized in the vegetative hyphae, conidia and bud tubes of M. oryzae using a hydrolytically inactive GFP-tagged MoGlu16 with point mutations at the catalytic position (His-MoGlu16E236A-Gfp). The spore germination and appressorium formation were significantly inhibited after incubation of 105/ml conidia with 0.03 µg/µl MoGlu16. Mycelia treated with MoGlu16 produced reactive oxygen species and triggered the cell wall integrity pathway, increasing the expression levels of genes involved in cell wall polysaccharide synthesis. These results revealed that MoGlu16 participated in the remodeling of cell wall in M. oryzae, laying a foundation for the analysis of cell wall structure.

2.
Front Microbiol ; 15: 1450345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035443
3.
Mol Plant Pathol ; 25(6): e13488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924248

RESUMO

Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.


Assuntos
Nicotiana , Imunidade Vegetal , Nicotiana/microbiologia , Nicotiana/imunologia , Nicotiana/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Agric Food Chem ; 72(27): 15213-15227, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38916250

RESUMO

Researchers often consider microorganisms from Stenotrophomonas sp. to be beneficial for plants. In this study, the biocidal effects and action mechanisms of volatile organic compounds (VOCs) produced by Stenotrophomonas sp. NAU1697 were investigated. The mycelial growth and spore germination of Fusarium oxysporum f. sp. cucumerinum (FOC), which is a pathogen responsible for cucumber wilt disease, were significantly inhibited by VOCs emitted from NAU1697. Among the VOCs, 33 were identified, 11 of which were investigated for their antifungal properties. Among the tested compounds, 2-ethylhexanol exhibited the highest antifungal activity toward FOC, with a minimum inhibitory volume (MIV) of 3.0 µL/plate (equal to 35.7 mg/L). Damage to the hyphal cell wall and cell membrane integrity caused a decrease in the ergosterol content and a burst of reactive oxygen species (ROS) after 2-ethylhexanol treatment. DNA damage, which is indicative of apoptosis-like cell death, was monitored in 2-ethylhexanol-treated FOC cells by using micro-FTIR analysis. Furthermore, the activities of mitochondrial dehydrogenases and mitochondrial respiratory chain complex III in 2-ethylhexanol-treated FOC cells were significantly decreased. The transcription levels of genes associated with redox reactions and the cell wall integrity (CWI) pathway were significantly upregulated, thus indicating that stress was caused by 2-ethylhexanol. The findings of this research provide a new avenue for the sustainable management of soil-borne plant fungal diseases.


Assuntos
Fungicidas Industriais , Fusarium , Hexanóis , Doenças das Plantas , Stenotrophomonas , Compostos Orgânicos Voláteis , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Hexanóis/farmacologia , Hexanóis/química , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana
5.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696960

RESUMO

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Assuntos
Biodegradação Ambiental , Hidrolases de Éster Carboxílico , Poliuretanos , Reciclagem , Poliuretanos/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Poliésteres
6.
Int J Biol Macromol ; 266(Pt 2): 131413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582482

RESUMO

ß-1,3-Galactanases selectively degrade ß-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-ß-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using ß-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only ß-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 ß-1,3-galactanase for the degradation of arabinogalactan.


Assuntos
Glicosídeo Hidrolases , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Especificidade por Substrato , Domínios Proteicos , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Cinética , Hidrólise , Galactanos/metabolismo , Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA