Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(18): 5248-5251, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270277

RESUMO

This study demonstrates a breakdown analysis of the dynamics of a liquid crystal elastomer (LCE) including quality check, geometric measurement, thermal characterization, and comparison of heat- and light-induced contractions. A blue light-responsive acrylate side chain LCE with 1% azobenzene dye was characterized. From a classical viewpoint, photo-thermal contraction is considered a dominating effect, while direct photo-mechanical deformation can be neglected due to a low dye percentage. However, the findings of this research suggest that a low percentage of azobenzene dye does not necessarily lead to heat-dominating dynamics of LCE. This phenomenon has not yet been quantitatively studied before. The approach reported in this Letter can potentially be used to extract the data to improve the dynamics models of light-driven LCEs.

2.
J Hazard Mater ; 474: 134775, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824772

RESUMO

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.


Assuntos
Agricultura , Bactérias , Biocombustíveis , Microbiologia do Solo , China , Bactérias/genética , Bactérias/efeitos dos fármacos , Genes Bacterianos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética
3.
Sci Total Environ ; 912: 169078, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101624

RESUMO

Biogas production causes vast amounts of biogas slurry (BS). Application of BS to croplands can substitute chemical fertilizers while result in higher ammonia emissions. Tremendous variation of ammonium concentration in different BSs induces imprecise substitution, while concentrated BS holds higher and more stable ammonium. Pyroligneous liquor, an acidic aqueous liquid from biochar production, can be used with concentrated BS to reduce ammonia emission. However, the effects of combining concentrated BS with pyroligneous liquor on ammonia emission and soil (nitrogen) N transformation have been poorly reported. In this study, a field experiment applying concentrated BS only, or combining with 5 %, 10 %, and 20 % pyroligneous liquor (v/v) for substituting 60 % N of single rice cultivation was conducted by contrast with chemical fertilization. The results showed that substituting chemical N fertilizers with concentrated BS increased 24.6 % ammonia emission. In comparison, applying 5 %, 10 %, and 20 % pyroligneous liquor with concentrated BS reduced 4.9 %, 20.3 %, and 24.4 % ammonia emissions, respectively. Applying concentrated BS with more pyroligneous liquor preserved higher ammonium and dissolved organic carbon in floodwater, and induced higher nitrate concentration after fertilization. Whereas soil ammonium and nitrate contents were decreased along with more pyroligneous liquor application before and after the topdressing and exhibited sustainable release until rice harvest. In comparison, the soil N mineralization and nitrification rates were occasionally elevated, while the activities of soil urease, protease, nitrate reductase, and nitrite reductase had multiple responses. Applying concentrated BS only, or combining with 5 %, 10, and 20 % pyroligneous liquor, have little effect on soil basic properties but inorganic N. In summary, applying concentrated BS with >10 % pyroligneous liquor could preserve more N with sustainable release and potentially lower N loss to the atmosphere, and we proposed that applying 13.5 % pyroligneous liquor in concentrated BS could achieve maximum soil fertility and minimum ammonia emission.


Assuntos
Compostos de Amônio , Oryza , Solo/química , Amônia/análise , Biocombustíveis , Nitratos/química , Fertilizantes/análise , Nitrogênio/análise , Oryza/química
4.
Chemosphere ; 339: 139669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527739

RESUMO

Manganese (Mn) is a critical element in soils, essential to plant growth. Long-term and intensively managed Lei bamboo (Phyllostachys violascens) stands are usually subjected to severe soil acidification and Mn activation. However, Mn migration from topsoil to deep soil induced by severe soil acidification was poorly recognized and studied. The distribution and changes of the total and the operationally defined Mn forms in soil profiles and its potential stress and environmental effect were investigated in a chronosequence of Lei bamboo stands (0, 2, 6, 11, and 16 years of stand age). The results showed that the Mn amount was significantly decreased in topsoil and accumulated in subsoil with the long-term and intensive fertilizer application. Soil exchangeable Mn and superphosphate extractable Mn demonstrated large different variation to total Mn, whereas their sum was largely higher than and highly correlated with 8-hydroxyquinoline (HQN) extractable Mn. Soil organic carbon, pH value, exchangeable bases, and soil redox simultaneously controlled soil Mn depletion. In conclusion, long-term and intensive fertilizer application leads to soil acidification and accelerated soil Mn depletion in bamboo stand soil, promoting Mn accumulation in bamboo shoots.


Assuntos
Carbono , Solo , Carbono/análise , Manganês , Fertilizantes , Poaceae , China , Concentração de Íons de Hidrogênio
5.
J Mech Behav Biomed Mater ; 136: 105478, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209590

RESUMO

Some atrial contractile assist devices applied on the heart surface can be regarded as a laminated Liquid crystal elastomer (LCE) plate under steady temperature loads and a contact mechanical force. An exact solution for the deformation of the laminated LCE plate under combined thermal and mechanical loads is derived by solving the three-dimensional (3D) equilibrium equations including heat conduction and thermoelastic theory. The validity of mathematical formula and computer programming is proved by convergence and comparison examples with finite element method (FEM). In order to simplify the complex calculation of exact solution, a back propagation neural network (BPNN) is further trained with a database containing 9504 sets of thermo-mechanical load conditions and their corresponding deformation which is solved by the exact solutions. Then the deformations of LCE plate subject to combined thermo-mechanical load can be predicted by this BP neural network instead of complex numerical calculation. Moreover, it is also applied to inverse the contact mechanical force at the bottom surface of LCE plate with a given deformation and temperature conditions. The results show that: (1) The results from the exact theoretical solution are in consistence with that from FEM but have a higher computational efficiency and stability; (2) The deformation of the laminated plate is more sensitive to the layered thickness of LCE than the variation of the temperature; (3) 3-D elasticity solutions of a laminated LCE plate under the combined thermos-mechanical load can be effectively predicted by a trained BP neural network.


Assuntos
Elastômeros , Cristais Líquidos , Elasticidade , Placas Ósseas , Redes Neurais de Computação
6.
Front Microbiol ; 13: 831746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495701

RESUMO

Microbial communities of soil aggregate-size fractions were explored with molecular and networking assays for topsoil samples from a clayey rice paddy under long-term fertilization treatments. The treatments included no fertilizer (NF) as control, chemical fertilizer only (CF), chemical fertilizer with swine manure (CFM), and chemical fertilizer with rice straw return (CFS). Following a wet-sieving protocol, water-stable aggregates were separated into size fractions of large macroaggregates (L-MacA, >2,000 µm), macroaggregates (MacA, 2,000-250 µm), microaggregates (MicA, 250-53 µm), fine microaggregates (F-MicA, 53-2 µm), and fine clay (F-Clay, <2 µm). Mass proportion was 32.3-38.2% for F-MicA, 23.0-31.5% for MacA, 19.0-23.1% for MicA, 9.1-12.0% for L-MacA, and 4.9-7.5% for F-Clay, respectively. The proportion of MacA was increased, but F-Clay was reduced by fertilization, whereas the mean weight diameter was increased by 8.0-16.2% from 534.8 µm under NF to 621.5 µm under CFM. Fertilization affected bacterial 16S rRNA and fungal 18S rRNA gene abundance in F-MicA and F-Clay but not in aggregates in size larger than 53 µm. However, bacterial and fungal community α-diversities and community structures were quite more divergent among the fertilization treatments in all size fractions. Organic carbon and gene abundance of bacteria and fungi were enriched in both L-MacA and MacA but depleted in F-Clay, whereas microbial Shannon diversity was rarely changed by fraction size under the four treatments. L-MacA and MacA contained more bacteria of r-strategists and copiotrophs, whereas F-MicA and F-Clay were demonstrated with a higher abundance of K-strategists and oligotrophs. Guilds of parasitic and litter saprotrophic fungi were enriched in F-MicA but depleted in L-MacA. Furthermore, most of bacterial and fungal operational taxonomic units were strongly interacted in L-MacA and MacA rather than in MicA and F-Clay. Thus, MacA acted as micro-hotspots enriched with functional and networked microbial communities, which were enhanced with organic/inorganic fertilization in the rice paddy.

7.
Environ Pollut ; 292(Pt A): 118336, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634403

RESUMO

BACKGROUND: Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES: To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS: A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS: The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 µg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 µg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION: Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomarcadores , Exposição Ambiental/análise , Humanos , Inflamação/induzido quimicamente , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise
8.
J Mech Behav Biomed Mater ; 125: 104918, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740016

RESUMO

This paper presents a convenient and efficient method to predict the mechanical solutions of a laminated Liquid Crystal Elastomers (LCEs) system subjected to combined thermo-mechanical load, based on a back propagation (BP) neural network which is trained by machine learning from a database established by analytical solutions. Firstly, the general solutions of temperature, displacement, and stress of any single layer in the LCEs system are obtained by solving the two-dimensional (2D) governing equations of both heat conduction and thermoelasticity. Then, the unknown coefficients in above general solutions are determined by a transfer-matrix method based on the continuity condition at the interface of adjacent layers and the combined thermo-mechanical loads condition at the surface of the LCEs system. The formula derivation and calculator program are verified through convergence studies and comparisons with FEM results. Finally, a database with displacements of LCEs system in a temperature field subjected to 561 sets of mechanical loads is established based on the presented analytical model. The BP neural network based on above database is further applied to establish the relationship between deformation and mechanical load to predict the elastic deformation of the LCEs system in a temperature field subjected to a mechanical load. Moreover, the BP network can also inverse the coefficients of mechanical load which induces the specific deformation in a temperature field. The numerical examples show that: (1) The deformation of a laminated LCEs system due to thermal load is limited within the range of human temperature changes from 36 °C to 40 °C. (2) The thickness of the LCE is a sensitive parameter on the deformation at the bottom surface of the system. (3) The accuracy of predicted displacements induced by the thermo-mechanical load and the inversed mechanical load based on deformation of the LCEs system in a temperature field using BP neural network reaches 99.6% and 98.5% respectively.


Assuntos
Elastômeros , Cristais Líquidos , Humanos , Redes Neurais de Computação
9.
J Hazard Mater ; 424(Pt B): 127535, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879525

RESUMO

The potential impact of short-term exposure to ambient air pollution on risk of anxiety remains uncertain. We performed a detailed evaluation based on data from national insurance databases in China. Daily hospital admissions for anxiety disorders were identified in 2013-2017 from the national insurance databases covering up to 261 million urban residents in 56 cities in China. A two-stage time-series study was conducted to evaluate the associations between short-term exposure to major ambient air pollutants, including fine particles, inhalable particles, nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone, and carbon monoxide, and risk of daily hospital admissions for anxiety. Significant associations between short-term exposures to ambient NO2 and SO2 and risk of daily hospital admissions for anxiety were found in the overall analysis. Per 10 µg/m3 increases in NO2 at lag0 and SO2 at lag6 were associated with significant increases of 1.37% (95% CI: 0.14%, 2.62%) and 1.53% (95% CI: 0.59%, 2.48%) in anxiety admissions, respectively. Stronger associations were found in the southern region and patients <65 years for SO2. Short-term exposure to ambient air pollution is associated with increased risk of anxiety admissions, which may provide important implications for promotion of mental health in the public.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Ansiedade , Transtornos de Ansiedade , China/epidemiologia , Hospitais , Humanos , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade
10.
Lancet Reg Health West Pac ; 15: 100232, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34528013

RESUMO

BACKGROUND: Ambient air pollution is leading risk factor for health burden in China. Few studies in China have investigated the economic loss related to short-term exposure to ambient PM2.5, which could trigger acute onset of cardiorespiratory diseases within a few days. METHODS: Daily ambient air pollutants data are obtained for each city from the National Air Quality Monitoring System and daily hospitalization data are obtained from the urban employee-based basic medical insurance scheme database in 74 Chinese cities with an average coverage of 88.5 million urban employees during 2016-2017. A three-stage time-series analytic approach is used in this study to investigate the impact of short-term exposure to ambient fine particulate (PM2.5) air pollution on hospital admissions, expenses and hospital stays of three cause-specific cardiorespiratory diseases, including lower respiratory infections (LRI), coronary heart disease (CHD) and stroke in the included cities. FINDINGS: Based on the time-series analysis using daily hospitalization data, 28,560 LRI cases, 54,600 CHD cases, and 23,989 stroke cases are attributable to ambient PM2.5 in the 74 cities during the study period, and the related attributable expenses are 220 million CNY (US$ 32.9 million) for LRI, 458 million CNY (US$ 68.5 million) for CHD, and 410 million CNY (US$ 65.8 million) for stroke, respectively. These attributable numbers account for 1.45% to 2.05% of total hospital admissions and 1.10% to 1.51% of total expenses for the three diseases during 2016-2017, respectively. The attributable numbers for the three cause-specific cardiorespiratory diseases would increase to 362,007 hospital admission cases and 3.68 billion CNY expenses ($US550 million) in the entire urban employee population (299 million) in China during 2016-2017, and the related direct economic loss of absence from work would be 798 million CNY (US$ 119.3 million). INTERPRETATION: Our results support that short-term exposure to ambient PM2.5 pollution could lead to significant health and economic impacts in China. Reducing levels of ambient PM2.5 can avoid substantial health damage and expenditures, and generate appreciable economic benefits from decreasing absence from work. FUNDING: Natural Science Foundation of China (82073509, 71903010, 71903011), and the National Key Research and Development Program of China (2017YFC0211600, 2017YFC0211601).

11.
Front Plant Sci ; 11: 1304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013953

RESUMO

Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C) accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in grassland ecosystems is scarce, despite the fact that these ecosystems are one of the most significant accumulators of biogenic Si (BSi). In this study, we collected the aboveground parts of four widespread grasses and soil profile samples in northern China and assessed the correlations between Si concentrations and stoichiometry and accumulation of C, N, and P in grasses at the landscape scale. Our results showed that Si concentrations in plants were significantly negatively correlated (p < 0.01) with associated C concentrations. There was no significant correlation between Si and N concentrations. It is worth noting that since the Si concentration increased, the P concentration increased from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N, and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si positively alters the concentrations and accumulation of C, N, and P likely resulting in the variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This study further suggests that the physiological function of Si is an important but overlooked factor in influencing biogeochemical cycles of C and P in grassland ecosystems.

12.
Environ Res ; 191: 110105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835677

RESUMO

BACKGROUND: Exposure to ambient particulate air pollution contributes substantially to the mortality and morbidity due to cardiovascular diseases (CVD), respiratory diseases and neurodegenerative diseases. Several hypothetical mechanisms have been proposed to explain these associations, particularly oxidative stress. Malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and Superoxide Dismutase (SOD) are typical biomarkers of oxidative stress and have been frequently investigated. However, the association between exposure to ambient particulate matter (PM) and these biomarkers has not been well established. OBJECTIVES: Evaluate the association between ambient particulate air pollution and biomarkers of oxidative stress based on existing epidemiological studies. METHODS: A systematic literature search was conducted in databases of Science Direct, PubMed, Web of Science, and Scopus up to April 24, 2020 to summarize epidemiological studies reporting the association between exposure to ambient PM (PM2.5, PM10, or both) and biomarkers of oxidative stress, and a meta-analysis was performed for the associations reported in individual studies using a random-effect model. RESULTS: This meta-analysis included 23 epidemiological studies (13 identified for 8-OHdG, 11 identified for MDA and 5 identified for SOD). A 10 µg/m3 increase in short-term exposure to ambient PM2.5 was associated with pooled percent changes of 2.10% (95% CIs: -0.13%, 4.38%), 1.60% (95% CIs: 0.21%, 3.01%) and -0.61% (95% CIs: -1.92%, 0.72%) in 8-OHdG, MDA and SOD, respectively. CONCLUSION: Short-term exposure to ambient PM2.5 was associated with a significantly increased level of MDA, indicating that ambient particulate air pollution may contribute to increased oxidative stress.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Biomarcadores , Estresse Oxidativo , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Material Particulado/toxicidade
13.
Sci Total Environ ; 659: 673-680, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096397

RESUMO

Croplands are subjected to nutrient loss mainly due to agricultural harvest. Silicon has beneficial effect on alleviating nutrient imbalance-induced stress. Addition of crop residue biochars to cropland can import both silicon (Si) and nutrients (e.g. nitrogen, phosphorus and potassium) directly and enhance their availability. Nevertheless, how the concentrations of Si and nutrients vary among the biochars derived from different feedstocks, and how crop Si and nutrients respond to addition of biochars to croplands have not yet been clarified comprehensively and quantitatively. Total and essentially available Si and nutrients in crop residue biochars and their relationships with crop Si and nutrient uptake were investigated by using data collected from peer reviewed papers. Biochars derived from rice husk, rice straw, corn stover, sugarcane residues, and wheat straw, which were produced by thermal pyrolysis at 150-900 °C under oxygen-limited conditions, averagely contained 20.03% (n = 10), 12.39% (n = 16), 10.25% (n = 7), 7.40% (n = 9), and 3.34% (n = 3) of total Si, respectively. By contrast, crop residue biochars contained, on average, 1.23% nitrogen (n = 461), 0.32% phosphorus (n = 209), 0.56% sulfur (n = 187), 2.73% potassium (n = 197), 1.17% calcium (n = 123), and 0.54% magnesium (n = 111), which largely depended on and varied widely with their feedstocks and pyrolysis conditions. On average, 32.6%-54.9% of the total Si and nutrients (excluding nitrogen) in crop residue biochars were essentially available. Hence, addition of crop residue biochars to croplands may contribute a considerable amount of total and available Si and nutrients, except available inorganic nitrogen. The increasing amounts of Si and nutrient input with addition of biochars had positive and statistically significant (p < 0.05) relationships with the increment of crop Si and nutrient uptake, respectively. In conclusion, addition of crop residue biochars can be beneficial to sustainable agriculture system through concerting Si and nutrient cycling in croplands.


Assuntos
Carvão Vegetal/química , Produtos Agrícolas/química , Nutrientes/análise , Silício/análise , Solo/química , Fazendas
14.
PLoS One ; 10(5): e0127474, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961557

RESUMO

Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration both for bulk soil and rhizosphere. However, the turnover and preservation of the root suberin biomolecules with soil property and field conditions deserve further field studies.


Assuntos
Brassica/química , Ácidos Dicarboxílicos/isolamento & purificação , Lipídeos/isolamento & purificação , Oryza/química , Raízes de Plantas/química , Sementes/química , Carbono/química , Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Extração Líquido-Líquido/métodos , Rizosfera , Saponinas/química , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA