Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Commun ; 15(1): 5587, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961076

RESUMO

Hybrid mapping is a powerful approach to efficiently identify and characterize genes regulated through mechanisms in cis. In this study, using reciprocal crosses of the phenotypically divergent Duroc and Lulai pig breeds, we perform a comprehensive multi-omic characterization of regulatory variation across the brain, liver, muscle, and placenta through four developmental stages. We produce one of the largest multi-omic datasets in pigs to date, including 16 whole genome sequenced individuals, as well as 48 whole genome bisulfite sequencing, 168 ATAC-Seq and 168 RNA-Seq samples. We develop a read count-based method to reliably assess allele-specific methylation, chromatin accessibility, and RNA expression. We show that tissue specificity was much stronger than developmental stage specificity in all of DNA methylation, chromatin accessibility, and gene expression. We identify 573 genes showing allele specific expression, including those influenced by parent-of-origin as well as allele genotype effects. We integrate methylation, chromatin accessibility, and gene expression data to show that allele specific expression can be explained in great part by allele specific methylation and/or chromatin accessibility. This study provides a comprehensive characterization of regulatory variation across multiple tissues and developmental stages in pigs.


Assuntos
Alelos , Metilação de DNA , Animais , Suínos/genética , Feminino , Cromatina/genética , Cromatina/metabolismo , Especificidade de Órgãos/genética , Fígado/metabolismo , Placenta/metabolismo , Masculino , Encéfalo/metabolismo , Sus scrofa/genética , Sequenciamento Completo do Genoma , Gravidez , Multiômica
2.
Quant Imaging Med Surg ; 14(7): 4333-4347, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022262

RESUMO

Background: Dynamic surveillance of vasculature is essential for evaluating the healing of oral ulcer. Existing techniques used in vascular imaging face limitations, such as inadequate spatial resolution, restricted diagnostic depth, and the necessity of exogenous contrast agents. Therefore, this study aimed to use robust photoacoustic imaging (PAI) for the dynamic monitoring of vascular response during healing and the associated treatment process of oral ulcer. Methods: Kunming mice (male, 8 weeks old, 31-41 g) were treated with 50% acetic acid for 90 s on the tongue mucosa for induction of oral traumatic ulcer. Mice were randomly divided into three groups (n=12): the control, compound chamomile and lidocaine hydrochloride gel (CCLH), and phycocyanin (PC) groups. PAI was then conducted on days 0, 2, 3, 5, and 7 to obtain vessel parameters of the ulcer area, including vessel intensity, density, mean diameter, maximum diameter, and curvature. Immunohistochemical and hematoxylin and eosin (HE) staining were performed on days 3 and 7 to assess microvessel density and inflammation score. The ulcer healing rate and body weight changes were evaluated for clinical observation. Results: Beginning on the second day after ulcer induction, there was a progressive increase over time in blood intensity and vessel parameters, including vascular density and diameter. On day 7, the CCLH and PC groups demonstrated significantly higher measures than did the control group in terms of blood intensity (P<0.05 and P<0.01), vascular density (both P values <0.05), mean diameter (both P values <0.01), and maximum diameter (P<0.01 and P<0.05). Vessel curvature in the two treatment groups exhibited no significant differences compared to that in the control group (both P values >0.05). The effects of vascular morphological changes were further supported by the histological and clinical outcomes. On day 7, compared to that of the control group, the level of microvessel density was significantly higher in both the CCLH (P<0.01) and PC (P<0.05) groups. The histopathological score in PC group was significantly lower than that of the control group on day 7 (P<0.05). Additionally, compared to that of the control group, the healing rates of the CCLH (P<0.01) and PC groups (P<0.05) were superior on day 7. On day 3, the control group showed more weight loss than did the CCLH (P<0.05) and PC (P<0.01) groups. Conclusions: These findings indicate that PAI is a valuable strategy for the dynamic and quantitative analysis of vascular alterations in oral traumatic ulcers and support its prospective application in improving clinical treatment.

3.
STAR Protoc ; 5(2): 103100, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38824640

RESUMO

Adult humans cannot regenerate the enamel-forming cell type, ameloblasts. Hence, human induced pluripotent stem cell (hiPSC)-derived ameloblasts are valuable for investigating tooth development and regeneration. Here, we present a protocol for generating three-dimensional induced early ameloblasts (ieAMs) utilizing serum-free media and growth factors. We describe steps for directing hiPSCs toward oral epithelium and then toward ameloblast fate. These cells can form suspended early ameloblast organoids. This approach is critical for understanding, treating, and promoting regeneration in diseases like amelogenesis imperfecta. For complete details on the use and execution of this protocol, please refer to Alghadeer et al.1.


Assuntos
Ameloblastos , Técnicas de Cultura de Células , Células-Tronco Pluripotentes Induzidas , Ameloblastos/citologia , Ameloblastos/metabolismo , Humanos , Meios de Cultura Livres de Soro , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas
4.
Mitochondrial DNA B Resour ; 9(6): 707-710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873279

RESUMO

The complete mitochondrial genome of the Zaomma eriococci (Ferrière, 1955) (Hymenoptera: Encyrtidae) was obtained through next-generation sequencing, making the first reported complete mitochondrial genome of the genus Zaomma. The mitochondrial genome is 15,648 bp in length and includes 37 classical eukaryotic mitochondrial genes along with an A + T rich region. All 13 protein-coding genes (PCGs) initiate with typical ATN codons. Of these, 10 PCG genes terminate with TAA, while three terminate with TAG. Additionally, there are 22 tRNA genes, ranging in size from 62 to 70 bp. The maximum likelihood phylogenetic tree was constructed based on 13 PCGs, indicates that Z. eriococci is closely related to Tassonia gloriae. This mitochondrial genome will serve as a valuable molecular resource for species identification, genetic analysis, and comparative genomic studies of Z. eriococci, contributing to the growing collection of mitochondrial genomes within the family Encyrtidae.

5.
Sci China Life Sci ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38748354

RESUMO

Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.

6.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731366

RESUMO

Somatic cell nuclear transfer (SCNT) technology holds great promise for livestock industry, life science and human biomedicine. However, the development and application of this technology is limited by the low developmental potential of SCNT embryos. The developmental competence of cloned embryos is influenced by the energy metabolic status of donor cells. The purpose of this study was to investigate the effects of CPI, an oxidative phosphorylation inhibitor, on the energy metabolism pathways of pig fibroblasts and the development of subsequent SCNT embryos. The results showed that treatment of porcine fibroblasts with CPI changed the cellular energy metabolic pathways from oxidative phosphorylation to glycolysis and enhanced the developmental ability of subsequent SCNT embryos. The present study establishes a simple, new way to improve pig cloning efficiency, helping to promote the development and application of pig SCNT technology.

7.
Animals (Basel) ; 14(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791636

RESUMO

We identified Wdr17 as a highly expressed gene in pachytene spermatocytes by transcriptomic analysis of mouse testis. Germ cell-deficient infertile mouse models had significantly reduced Wdr17 expression. We performed gene interference and overexpression in the mouse spermatocyte cell line GC-2spd(ts) and investigated how Wdr17 affects spermatocyte growth and development. Our results showed that Wdr17 suppression significantly decreased cell growth rate and increased cell apoptosis in GC-2spd(ts) cells. Wdr17 suppression also arrested the cell cycle at the G1 phase. On the contrary, Wdr17 overexpression significantly promoted cell proliferation and inhibited cell apoptosis in GC-2spd(ts) cells. More cells were enriched at the S stage with a concomitant reduction of cells at the G1 stage. Wdr17 promotes mouse spermatocyte proliferation by advancing cell cycle progression and inhibiting cell apoptosis, indicating its potential role in regulating spermatogenesis in the mouse.

8.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675415

RESUMO

In vitro oocyte maturation (IVM) technology is important for assisted animal and human reproduction. However, the maturation rates and developmental potential of in vitro-matured oocytes are usually lower than those of in vivo-matured oocytes. Oxidative stress is a main factor that causes the lower maturation rates and quality of in vitro-matured oocytes. The purpose of this study was to investigate the effects of treatment with SkQ1, a mitochondria-targeted antioxidant, on mouse IVM and subsequent embryonic development. The results demonstrated that the supplementation of SkQ1 during IVM improves the maturation rates of mouse oocytes and the subsequent developmental competence of in vitro-fertilized embryos. The addition of SkQ1 to the IVM medium also decreased oxidative stress and apoptosis, and increased mitochondrial membrane potential in matured mouse oocytes. This study provides a new method through which to enhance the maturation rates and the quality of in vitro-matured mouse oocytes, thus promoting the application and development of assisted animal and human reproductive technology.

9.
Antioxidants (Basel) ; 13(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38539881

RESUMO

Recent studies have established that exosomes (EXs) derived from follicular fluid (FF) can promote oocyte development. However, the specific sources of these EXs and their regulatory mechanisms remain elusive. It is universally acknowledged that oocyte development requires signal communication between granulosa cells (GCs) and oocytes. However, the role of GC-secreted EXs and their functions are poorly understood. This study aimed to investigate the role of porcine granulosa-cell-derived exosomes (GC-EXs) in oocyte development. In this study, we constructed an in vitro model of porcine GCs and collected and identified GC-EXs. We confirmed that porcine GCs can secrete EXs and investigated the role of GC-EXs in regulating oocyte development by supplementing them to cumulus-oocyte complexes (COCs) cultured in vitro. Specifically, GC-EXs increase the cumulus expansion index (CEI), promote the expansion of the cumulus, alleviate reactive oxygen species (ROS), and increase mitochondrial membrane potential (MMP), resulting in improved oocyte development. Additionally, we conducted small RNA sequencing of GC-EXs and hypothesized that miR-148a-3p, the highest-expressed microRNA (miRNA), may be the key miRNA. Our study determined that transfection of miR-148a-3p mimics exerts effects comparable to the addition of EXs. Meanwhile, bioinformatics prediction, dual luciferase reporter gene assay, and RT-qPCR identified DOCK6 as the target gene of miR-148a-3p. In summary, our results demonstrated that GC-EXs may improve oocyte antioxidant capacity and promote oocyte development through miR-148a-3p by targeting DOCK6.

10.
J Agric Food Chem ; 72(13): 7546-7557, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513219

RESUMO

The mammary gland undergoes significant physiological changes as it undergoes a transition from virgin to pregnancy, lactation, and involution. However, the dynamic role of proteins in regulating these processes during mouse mammary gland development has not been thoroughly explored. In this study, we collected mouse mammary gland tissues from mature virgins aged 8-10 weeks (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW 1d), and day 3 of forced weaning (FW 3d) stages for analysis using DIA-based quantitative proteomics technology. A total of 3,312 proteins were identified, of which 843 were DAPs that were categorized into nine clusters based on their abundance changes across developmental stages. Notably, DAPs in cluster 2, which peaked at the L12d stage, were primarily associated with mammary gland development and lactation. The protein-protein interaction network revealed that the epidermal growth factor (EGF) was central to this cluster. Our study provides a comprehensive overview of the mouse mammary gland development proteome and identifies some important proteins, such as EGF, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 6 (STAT6) that may serve as potential targets for future research to provide guidelines for a deeper understanding of the developmental biology of mammary glands.


Assuntos
Fator de Crescimento Epidérmico , Lactação , Gravidez , Feminino , Camundongos , Animais , Fator de Crescimento Epidérmico/metabolismo , Lactação/fisiologia , Proteoma/metabolismo , Glândulas Mamárias Animais/metabolismo
11.
Chemosphere ; 353: 141564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417490

RESUMO

In recent years, the atmospheric pollution caused by phthalate esters (PAEs) has been increasing due to the widespread use of PAE-containing materials. Existing research on atmospheric PAEs lacks long-term continuous observation and samples from cities in central China. To investigate the pollution characteristics, sources, and health risks of PAEs in the ambient air of a typical city in central China, daily PM2.5 samples were collected in Nanchang from November 2020 to October 2021. In this study, the detection and quantification of six significant PAE contaminants, namely diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), Di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisodecyl phthalate (DIDP), were accomplished using gas chromatography and mass spectrometry. The results revealed that the concentrations of DEP, DnBP, DEHP, and DnOP were relatively high. Higher temperatures promote the volatilization of PAEs, leading to an increase in the gaseous and particulate PAE concentrations in warm seasons and winter pollution scenarios. The results of principal component analysis show that PAEs mainly come from volatile products and polyvinylchloride plastics. Using positive matrix factorization analysis, it is shown that these two sources contribute 67.0% and 33.0% in atmosphere PAEs, respectively. Seasonally, the contribution of volatile products to both gaseous and particulate PAEs substantially increases during warm seasons. The residents in Nanchang exposed to PAEs have a negligible non-cancer risk and a potential low cancer risk. During the warm seasons, more PAEs are emitted into the air, which will increase the toxicity of PAEs and their impact on human health.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/análise , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Ftálicos/análise , Dibutilftalato/análise , Poeira/análise , China , Ésteres/análise
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 452-461, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419500

RESUMO

Skeletal muscle is not only the largest organ in the body that is responsible for locomotion and exercise but also crucial for maintaining the body's energy metabolism and endocrine secretion. The trimethylation of histone H3 lysine 27 (H3K27me3) is one of the most important histone modifications that participates in muscle development regulation by repressing the transcription of genes. Previous studies indicate that the RASGRP1 gene is regulated by H3K27me3 in embryonic muscle development in pigs, but its function and regulatory role in myogenesis are still unclear. In this study, we verify the crucial role of H3K27me3 in RASGRP1 regulation. The gain/loss function of RASGRP1 in myogenesis regulation is performed using mouse myoblast C2C12 cells and primarily isolated porcine skeletal muscle satellite cells (PSCs). The results of qPCR, western blot analysis, EdU staining, CCK-8 assay and immunofluorescence staining show that overexpression of RASGRP1 promotes cell proliferation and differentiation in both skeletal muscle cell models, while knockdown of RASGRP1 leads to the opposite results. These findings indicate that RASGRP1 plays an important regulatory role in myogenesis in both mice and pigs.


Assuntos
Histonas , Mioblastos , Animais , Camundongos , Suínos , Histonas/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
13.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202845

RESUMO

Gender control technologies are promising for enhancing the production efficiency of the farm animal industry, and preventing sex-linked hereditary diseases in humans. It has been shown that the X sperm of mammalian animals specifically expresses X-chromosome-derived toll-like receptor 7/8 (TLR7/8), and the activation of TLR7/8 on the X sperm by their agonist, R848, can separate X and Y sperm via the specific inhibition of X sperm motility. The use of R848-preselected sperm for fertilization resulted in sex-ratio-skewed embryos or offspring. In this study, we aimed to investigate whether two other TLR7/8 ligands, double-stranded RNA-40 (dsRNA-40) and double-stranded RNA-DR (dsRNA-DR), are also effective in the separation of mouse X and Y sperm and the subsequent generation of gender-ratio-skewed in vitro fertilization (IVF) embryos. Our results indicated that cholesterol modification significantly enhances the transfection of dsRNA-40 and dsRNA-DR into sperm cells. dsRNA-40 and dsRNA-DR incubation with mouse sperm could separate X and Y sperm by the specific suppression of X sperm motility by decreasing its ATP level and mitochondrial activity. The use of a dsRNA-40- or dsRNA-DR-preselected upper layer of sperm, which predominantly contains high-motility Y sperm, for IVF caused a male-biased sex ratio shift in resulting embryos (with 65.90-74.93% of embryos being male). This study develops a simple new method for the efficient separation of mammalian X and Y sperm, enabling the selective production of male or female progenies.


Assuntos
RNA de Cadeia Dupla , Receptor 7 Toll-Like , Humanos , Animais , Feminino , Masculino , Camundongos , Sêmen , Motilidade dos Espermatozoides , Animais Domésticos , Ligantes , Mamíferos
14.
J Proteome Res ; 23(2): 775-785, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38227546

RESUMO

Properly developed embryos are critical for successful embryo implantation. The dynamic landscape of proteins as executors of biological processes in pig peri-implantation embryos has not been reported so far. In this study, we collected pig embryos from days 9, 12, and 15 of pregnancy during the peri-implantation stage for a PASEF-based quantitative proteomic analysis. In total, approximately 8000 proteins were identified. These proteins were classified as stage-exclusive proteins and stage-specific proteins, respectively, based on their presence and dynamic abundance changes at each stage. Functional analysis showed that their roles are consistent with the physiological processes of corresponding stages, such as the biosynthesis of amino acids and peptides at P09, the regulation of actin cytoskeletal organization and complement activation at P12, and the vesicular transport at P15. Correlation analysis between mRNAs and proteins showed a general positive correlation between pig peri-implantation embryonic mRNAs and proteins. Cross-species comparisons with human early embryos identified some conserved proteins that may be important in regulating embryonic development, such as STAT3, AP2A1, and PFAS. Our study provides a comprehensive overview of the pig embryo proteome during implantation, fills gaps in relevant developmental studies, and identifies some important proteins that may serve as potential targets for future research.


Assuntos
Implantação do Embrião , Proteômica , Gravidez , Feminino , Suínos , Humanos , Animais , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Peptídeos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Desenvolvimento Embrionário
15.
Sci Total Environ ; 912: 169216, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092198

RESUMO

Nonpolar organic compounds (NPOCs) are found in atmospheric aerosols and have significant implications for environmental and human health. Although many studies have quantitatively estimated the sources of NPOCs in different cities, few have evaluated their main influencing factors (e.g., emissions and meteorological conditions) at relatively long (e.g., different seasons) and short timescales (e.g., several days during pollution episodes). A better understanding of this issue could optimise strategies for dealing with organic contamination in atmospheric particulate matter. NPOCs (including n-alkanes, PAHs and hopanes) in fine particulate matter (PM2.5) were sampled daily at Nanchang, China, from 1 November 2020 to 31 October 2021. Analyses of specific biomarkers and diagnostic ratios indicate that the NPOCs mainly had anthropogenic sources. The quantitative estimates of a positive matrix factorization model show that fossil fuel and biomass combustion were the main sources of n-alkanes (contributing 64.8 %), while vehicle exhaust was the main source of PAHs (47.0 %) and hopanes (52.3 %). Seasonally, the contributions from coal and/or biomass combustion were higher in autumn and winter (40.2-56.3 %) than in spring and summer (25.7-44.3 %), while contributions from natural plants, petroleum volatilization and vehicle exhaust were higher in spring and summer (14.7-63.5 %) than in autumn and winter (8.1-48.9 %). Redundancy analysis shows that increased emissions, especially from coal and/or biomass combustion, are the main cause of increases in NPOCs, during both annual sampling periods and winter pollution episodes. Over the year, higher temperature and longer sunshine hours correspond to lower NPOC concentrations. In winter pollution episodes, increases in temperature and relative humidity correspond to increases in NPOC concentrations. Our results suggest that controlling primary emissions, especially from coal and biomass combustion, may be an effective way to prevent increases in NPOC concentrations.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Material Particulado/análise , China , Emissões de Veículos/análise , Compostos Orgânicos/análise , Carvão Mineral/análise , Aerossóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos Pentacíclicos/análise , Alcanos/análise
16.
J Proteomics ; 293: 105065, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38158016

RESUMO

The 12th day of gestation is a critical period for embryo loss and the beginning of imminent implantation in sows. Data independent acquisition (DIA) technology is one of the high-throughput, high-resolution and reproducible proteomics technologies for large-scale digital qualitative and quantitative research. The aim of this study was to identify and characterize the protein abundance landscape of Yorkshire pig endometrium on the 12th day of pregnancy (P12) and estrous cycle (C12) using DIA proteomics. A total of 1251 differentially abundant proteins (DAPs) were identified, of which 882 were up-regulated and 369 were down-regulated at P12. Functional enrichment analysis showed that the identified proteins were related to metabolism, biosynthesis and signaling pathways. Three proteins were selected for Western blot (WB) validation and the results were consistent with the DIA data. Further combined with transcriptome data, fibrinogen like 2 (FGL2) and S100 calcium binding protein A8 (S100A8) were verified to be highly abundant in the P12 endometrial epithelium. In summary, there were significantly different abundance of proteome profiles in C12 and P12 endometrium, suggesting that DAPs are associated with changes in endometrial receptivity, which laid the foundation for further research on related regulatory mechanisms. SIGNIFICANCE: The 12th day of gestation is an important point in the peri-implantation period of pigs, when the endometrium presents a receptive state under the stimulation of estrogen. DIA proteomics technology is an emerging protein identification technology in recent years, which can obtain protein information through comprehensive and unbiased scanning. In this study, DIA technology was used to characterize endometrial proteins in pigs during the peri-implantation period. The results showed that higher protein abundance was detected using the DIA technique, and some of these DAPs may be involved in regulating embryo implantation. This study will help to better reveal the related proteins involved in embryo implantation, and lay a foundation for further research on the mechanism of endometrial regulation of embryo implantation. SIGNIFICANCE OF THE STUDY: The 12th day of gestation is an important point in the peri-implantation period of pigs, when the endometrium presents a receptive state under the stimulation of estrogen. DIA proteomics technology is an emerging protein identification technology in recent years, which can obtain protein information through comprehensive and unbiased scanning. In this study, DIA technology was used to characterize endometrial proteins in pigs during the peri-implantation period. The results showed that higher protein abundance was detected using the DIA technique, and some of these DAPs may be involved in regulating embryo implantation. This study will help to better reveal the related proteins involved in embryo implantation, and lay a foundation for further research on the mechanism of endometrial regulation of embryo implantation.


Assuntos
Implantação do Embrião , Proteômica , Gravidez , Animais , Suínos , Feminino , Proteômica/métodos , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Ciclo Estral , Estrogênios/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38048025

RESUMO

Hepcidin, an antimicrobial peptide (AMP), is a well-conserved molecule present in various species such as fish, amphibians, birds, reptiles, and mammals. It exhibits broad-spectrum antimicrobial activity and holds a significant role in the innate immune system of host organisms. The northern snakehead (Channa argus) has become a valuable freshwater fish in China and Asia. In this investigation, the cDNA encoding the hepcidin gene of northern snakehead was cloned and named caHep. The amino acid sequences and protein structure of caHep are similar to those of hepcidins from other fish. The eukaryotic expression product of the caHep gene showed broad-spectrum antibacterial activity. Scanning electron microscope analysis indicated that the caHep peptide inhibited bacterial growth by damaging their cell membranes. Lipopolysaccharide (LPS) injection induced significant expression of caHep, implying the involvement of caHep in the innate immune response of northern snakeheads. This investigation showed that the caHep peptide is potentially a robust antibacterial drug against bacterial diseases in aquaculture animals.

18.
Animals (Basel) ; 13(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37889685

RESUMO

Oocytes matured in vitro are useful for assisted human and farm animal reproduction. However, the quality of in vitro matured oocytes is usually lower than that of in vivo matured oocytes, possibly due to the absence of some important signal regulators in vitro. In this study, untargeted metabolomics was used to detect the changes in the metabolites in the follicular fluid (FF) during in vivo pig oocyte maturation and in the culture medium during in vitro maturation. Our results showed that the total metabolite changing profile of the in vivo FF was different from that of the in vitro maturation medium, but the levels of 23 differentially expressed metabolites (DEMs) changed by following the same trend during both in vivo and in vitro pig oocyte maturation. These 23 metabolites may be important regulators of porcine oocyte maturation. We found that progesterone and androstenedione, two factors in the ovarian steroidogenesis pathway enriched from the DEMs, were upregulated in the FF during in vivo pig oocyte maturation. The levels of these two factors were 31 and 20 fold, respectively, and they were higher in the FF than in the culture medium at the oocyte mature stage. The supplementation of progesterone and androstenedione during in vitro maturation significantly improved the pig oocyte maturation rate and subsequent embryo developmental competence. Our finding suggests that a metabolic abnormality during in vitro pig oocyte maturation affects the quality of the matured oocytes. This study identified some important metabolites that regulate oocyte maturation and their developmental potential, which will be helpful to improve assisted animal and human reproduction.

19.
Dev Cell ; 58(20): 2163-2180.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37582367

RESUMO

Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.


Assuntos
Esmalte Dentário , Odontogênese , Dente , Humanos , Ameloblastos/metabolismo , Amelogênese/genética
20.
Front Nutr ; 10: 1192758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583461

RESUMO

The quality of oocytes determines their development competence, which will be rapidly lost if the oocytes are not fertilized at the proper time after ovulation. SIRT1, one of the sirtuin family members, has been proven to protect the quality of oocytes during postovulatory oocyte aging. However, evidence of the effect of SIRT1 on the activity of organelles including the mitochondria, the endoplasmic reticulum (ER), the Golgi apparatus, and the lysosomes in postovulatory aging oocyte is lacking. In this study, we investigated the distribution and function of organelles in postovulatory aged oocytes and discovered abnormalities. Luteolin, which is a natural flavonoid contained in vegetables and fruits, is an activator of SIRT1. When the oocytes were treated with luteolin, the abnormal distribution of mitochondria, ER, and Golgi complex were restored during postovulatory oocyte aging. The ER stress protein GRP78 and the lysosome protein LAMP1 increased, while the mitochondrial membrane potential and the Golgi complex protein GOLPH3 decreased in aged oocytes, and these were restored by luteolin treatment. EX-527, an inhibitor of SIRT1, disrupted the luteolin-mediated normal distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes. In conclusion, we demonstrate that luteolin regulates the distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes during postovulatory oocyte aging by activating SIRT1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA