Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
Small ; : e2400671, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101624

RESUMO

Brain lipidic peroxidation is closely associated with the pathophysiology of various psychiatric diseases including depression. Malondialdehyde (MDA), a reactive aldehyde produced in lipid region, serves as a crucial biomarker for lipid peroxidation. However, techniques enabling real-time detection of MDA are still lacking due to the inherent trade-off between recognition dynamics and robustness. Inspired by the structure of phospholipid bilayers, amphiphilic carbon dots named as CG-CDs targeted to cell membrane are designed for real-time monitoring of MDA fluctuations. The design principle relies on the synergy of dynamic hydrogen bonding recognition and cell membrane targetability. The latter facilitates the insertion of CG-CDs into lipid regions and provides a hydrophobic environment to stabilize the labile hydrogen bonding between CG-CDs and MDA. As a result, recognition robustness and dynamics are simultaneously achieved for CG-CDs/MDA, allowing for in situ visualization of MDA kinetics in cell membrane due to the instant response (<5 s), high sensitivity (9-fold fluorescence enhancement), intrinsic reversibility (fluorescence on/off), and superior selectivity. Subsequently, CG-CDs are explored to visualize nerve cell membrane impairment in depression models of living cells and zebrafish, unveiling the extensive heterogeneity of the lipid peroxidation process and indicating a positive correlation between MDA levels and depression.

2.
Biochem Pharmacol ; 229: 116472, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127154

RESUMO

Curcumin, extracted from Zingiberaceae and Araceae rhizomes, is clinically used for its anti-inflammatory, antibacterial, antioxidant, and anti-cancer properties. Its safety and potential make it a promising base for designing enhanced derivatives. The focus now is on optimizing curcumin and synthesizing more potent 1,4-pentadien-3-ones, which have anti-cancer activities. In the realm of triple-negative breast cancer (TNBC), an aggressive and invasive form with high metastatic potential, the need for innovative treatments is acute. The challenges posed by chemotherapy resistance, recurrence, and TNBC's heterogeneity have emphasized the necessity for novel therapeutic approaches. Our strategy involved the integration of a quinoxaline ring into 1,4-pentadien-3-one, followed by subsequent modifications. In this study, N17 demonstrated the ability to induce cell death and effectively suppress cell proliferation in breast cancer cells. These observed anti-cancer effects were attributed to the inhibition of p-AKT(S473), a key regulator implicated in both cell apoptosis and the modulation of epithelial-mesenchymal transition process in breast cancer cells. Furthermore, our investigation indicated N17 achieves its inhibitory effects on p-AKT(S473) by specifically targeting the CSNK1G3 protein. Remarkably, N17 not only impedes the EMT process but also triggers apoptosis through the CSNK1G3/AKT signaling axis. These findings provide the critical role of CSNK1G3 as an anti-cancer regulator in TNBC, establishing N17 as a pharmacological intervention with immense promise for treating cancer metastasis.

3.
Sci Rep ; 14(1): 18324, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112492

RESUMO

Double-layer island working face main roadway coal pillars are affected by complex mining stress superposition, when different coal pillar width combinations, the surrounding rock stress field will produce different degrees of regional loading increase effect; the study of the surrounding rock stress field regional superposition loading increase law is meaningful to explaining the failure mode of the roadway and determining the critical control area. This study combines numerical simulation with on-site monitoring and other methods and draws the following conclusions: The superimposed loading increase law ("decreasing" → "increasing") of the abutment pressure and deviatoric stress in the lower coal seam of the double-layer island working face during the mining; the type of the principal stress deflection in the advance working face region; and by obtaining the three types of development morphology of the deviatoric stress peak zone of the roadway and its corresponding nine evolution modes (one type of circular tube → four types of inverse hyperbolic body → four types of hyperbolic body) in the double-layered island working face mining. Indicated the critical reinforcement area corresponding to the main roadway when at different combinations of coal pillar widths; determined the main track roadway protective coal pillars width for 40 m and the shape of the roadway peak deviatoric stress zone is the inverse class hyperbolic body mode; according to the evolution mode of the peak deviatoric stress zone, determined the synergistic failure control program for the asymmetric critical zone of the roadway surrounding rock which is a targeted scientific support method; after the feedback of on-site monitoring and, the support program is reasonable and effective.

4.
J Mater Chem B ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145600

RESUMO

Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.

5.
Orthop Surg ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135273

RESUMO

OBJECTIVE: A robotic system was recently introduced to improve prosthetic alignment during total knee arthroplasty (TKA). The purpose of this multicenter, prospective, randomized controlled trial (RCT) was to determine whether robotic-arm-assisted TKA improves clinical and radiological outcomes when compared to conventional TKA. METHODS: One hundred and thirty patients who underwent primary TKA were enrolled in this prospective, randomized controlled trial, which was conducted at three hospitals. Five patients were lost to follow-up 6 weeks after surgery. Therefore, 125 participants (63 in the intervention group and 62 in the control group) remained in the final analysis. The primary outcome was the rate at which the mechanical axis of the femur deviated by less than 3° from the mechanical axis of the tibia. This was evaluated by full-length weight-bearing X-rays of the lower limb 6 weeks postoperatively. Secondary outcomes included operation times, 6-week postoperative functional outcomes evaluated by the American Knee Society score (KSS) and the Western Ontario and McMaster Universities osteoarthritis index (WOMAC), short form-36 (SF-36) health survey results, and the occurrence of adverse events (AEs) and serious adverse events (SAEs). RESULTS: At 6 weeks postoperatively, we found that the rate of radiographic inliers was significantly higher in the intervention group (78.7% vs 51.6%; p = 0.00; 95% confidence interval, 10.9% to 43.2%). The operation was significantly longer in the intervention group than in the control group (119.5 vs 85.0 min; p = 0.00). There were no significant differences in the 6-week postoperative functional outcomes, SF-36, AEs, and SAEs between the two groups. There were no AEs or SAEs that were determined to be "positively related" to the robotic system. CONCLUSION: Robotic-arm-assisted TKA is safe and effective, as demonstrated in this trial.

6.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39001110

RESUMO

Aircraft ducts play an indispensable role in various systems of an aircraft. The regular inspection and maintenance of aircraft ducts are of great significance for preventing potential failures and ensuring the normal operation of the aircraft. Traditional manual inspection methods are costly and inefficient, especially under low-light conditions. To address these issues, we propose a new defect detection model called LESM-YOLO. In this study, we integrate a lighting enhancement module to improve the accuracy and recognition of the model under low-light conditions. Additionally, to reduce the model's parameter count, we employ space-to-depth convolution, making the model more lightweight and suitable for deployment on edge detection devices. Furthermore, we introduce Mixed Local Channel Attention (MLCA), which balances complexity and accuracy by combining local channel and spatial attention mechanisms, enhancing the overall performance of the model and improving the accuracy and robustness of defect detection. Finally, we compare the proposed model with other existing models to validate the effectiveness of LESM-YOLO. The test results show that our proposed model achieves an mAP of 96.3%, a 5.4% improvement over the original model, while maintaining a detection speed of 138.7, meeting real-time monitoring requirements. The model proposed in this paper provides valuable technical support for the detection of dark defects in aircraft ducts.

7.
Front Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958922

RESUMO

Corona virus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has affected the whole world. Acquired thrombotic thrombocytopenic purpura (TTP) has been reported after administration of mRNA- or adenoviral vector-based COVID-19 vaccines, including Ad26.COV2-S, BNT162b2, mRNA-1273, and ChAdOx1 nCov-19. However, whether inactivated vaccines, such as CoronaVac, could cause TTP and whether the symptoms in TTPs caused by inactivated vaccines are different from previously reported cases are unknown. In this study, two cases were reported. Both cases developed TTP after the second CoronaVac vaccination shot, but not the first. They demonstrated symptoms of fever, neurological abnormalities, renal dysfunction, thrombocytopenia, and hemolysis. Both patients achieved complete remission through several sessions of plasma exchanges and immune suppression. The incidence of TTP in Nanjing area was analyzed. The number of patients with TTP was 12 in 2019, 6 in 2020, 16 in 2021, and 19 in 2022. To the authors' knowledge, this report is the first report of TTP associated with inactivated COVID-19 vaccine (CoronaVac). The rarity and delayed onset may be due to the relatively milder immune response caused by the inactivated vaccines than mRNA-based ones. Timely plasma exchange is a vital treatment for CoronaVac-related TTP, similar to activated vaccine-related TTP.

8.
Circ Res ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082138

RESUMO

BACKGROUND: ß-adrenergic receptor (ß-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of ß-AR remains unclear. METHODS: Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates ß-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the ß-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between ß-adrenergic insult and ß-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from ß-arrestin-1-S330A/S330D mutation and ß-adrenergic insult. RESULTS: Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to ß-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted ß-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing ß-arrestin-1-S330D (active form) inhibited the ß-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. ß-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the ß-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS: AMPK phosphorylation of ß-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting ß-AR/cAMP/PKA activation. Subsequently, ß-arrestin-1 Ser330 phosphorylation blocks ß-AR-induced cardiac inflammasome activation and remodeling.

9.
Foods ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063355

RESUMO

This study aimed to evaluate the impact of dietary energy and protein levels on the meat quality and metabolomic profile of Yunshang black goats. For this, 80 Yunshang black goats (male, 6 months old, with a mean live body weight of 35.82 ± 2.79 kg) were used in a completely randomized design with a 2 × 2 factorial dietary arrangement. The dietary treatments were (1) high energy (9.74 MJ/kg) with high protein (12.99%) (HEHP), (2) high energy (9.76 MJ/kg) with low protein (10.01%) (HELP), (3) low energy (8.18 MJ/kg) with high protein (13.04%) (LEHP), and (4) low energy (8.14 MJ/kg) with low protein (10.05%) (LELP). The experiment lasted 64 days, including 14 days for dietary adaptation and a 50-day feeding trial. At the end of the experiment, four animals from each treatment were slaughtered to assess their meat quality and metabolomic profiles. The pH value was greater for the goats fed the LELP diet compared with the other treatments. The LEHP-fed group's meat was brighter (L*) than that of the other three groups. The HEHP-fed group had considerably more tender meat (p < 0.05) compared with the LEHP-fed group. Moreover, 72 and 183 differentiated metabolites were detected in the longissimus muscle samples by using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, respectively. The hydropathy and volatilities of raw meat were different (p < 0.05), suggesting changes in the meat flavor because of the dietary treatments. Based on the results, it can be concluded that feeding a high-energy- and high-protein-containing diet improved the tenderness, flavor, and fatty acid contents of mutton.

10.
Small ; : e2402827, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017030

RESUMO

Oxygen vacancy (Vo), as one of the most common surface defects, significantly influence the physiochemical properties of metal oxides. However, it remains a challenge for existing techniques to visualize the evolution of Vo during redox process due to its heterogeneous distribution, small size, and dynamic nature. Herein, the real-time monitoring of such microscopic interfacial events is reported by advantage of the high-contrast fluorescence response of carbon dots (H-CDs) to Vo. The green emissive H-CDs possess a unique disc-shaped structure and exceptional hydrophilicity, allowing their tight adhesion to the surfaces of Vo-rich MgO by simple mixing. Subsequently, a water involved interfacial reaction occurred between H-CDs and Vo, resulting in gradual quenching of the original green emission and simultaneously emergence of bright red fluorescence. Moreover, the spatiotemporal diffusion dynamics and reaction kinetics are investigated by confocal laser scanning microscopy, revealing the time-dependent reorganization and structural heterogeneity at the interface. The finding provides a new toolbox for in situ imaging of Vo-triggered phenomena at a microscopic level, which will be helpful in promoting the rational design of oxide materials.

11.
Angew Chem Int Ed Engl ; : e202409206, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975661

RESUMO

Regulating competitive reaction pathways to direct the selectivity of electrochemical CO2 reduction reaction toward a desired product is crucial but remains challenging. Herein, switching product from HCOOH to CO is achieved by incorporating Sb element into the CuS, in which the Cu-S ionic bond is coupled with S-Sb covalent bond through bridging S atoms that elongates the Cu-S bond from 2.24 Å to 2.30 Å. Consequently, CuS with a shorter Cu-S bond exhibited a high selectivity for producing HCOOH, with a maximum Faradaic efficiency (FE) of 72%. Conversely, Cu3SbS4 characterized by an elongated Cu-S bond exhibited the most pronounced production of CO with a maximum FE of 60%. In situ spectroscopy combined with density functional theory calculations revealed that the altered Cu‒S bond length and local coordination environment make the *HCOO binding energy weaker on Cu3SbS4 compared to that on CuS. Notably, a volcano-shaped correlation between the Cu-S bond length and adsorption strength of *COOH indicates that Cu-S in Cu3SbS4 as double-active sites facilitates the adsorption of *COOH, and thus results in the high selectivity of Cu3SbS4 toward CO.

12.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065853

RESUMO

BACKGROUND: As an important part of the tongue, the tongue coating is closely associated with different disorders and has major diagnostic benefits. This study aims to construct a neural network model that can perform complex tongue coating segmentation. This addresses the issue of tongue coating segmentation in intelligent tongue diagnosis automation. METHOD: This work proposes an improved TransUNet to segment the tongue coating. We introduced a transformer as a self-attention mechanism to capture the semantic information in the high-level features of the encoder. At the same time, the subtraction feature pyramid (SFP) and visual regional enhancer (VRE) were constructed to minimize the redundant information transmitted by skip connections and improve the spatial detail information in the low-level features of the encoder. RESULTS: Comparative and ablation experimental findings indicate that our model has an accuracy of 96.36%, a precision of 96.26%, a dice of 96.76%, a recall of 97.43%, and an IoU of 93.81%. Unlike the reference model, our model achieves the best segmentation effect. CONCLUSION: The improved TransUNet proposed here can achieve precise segmentation of complex tongue images. This provides an effective technique for the automatic extraction in images of the tongue coating, contributing to the automation and accuracy of tongue diagnosis.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Língua , Língua/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
13.
Neoplasia ; 56: 101025, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996538

RESUMO

The study of extrachromosomal DNA (ecDNA), an element existing beyond classical chromosomes, contributes to creating a more comprehensive map of the cancer genome. In hematological malignancies, research on ecDNA has lacked comprehensive investigation into its frequency, structure, function, and mechanisms of formation. We re-analyzed WGS data from 208 hematological cancer samples across 11 types, focusing on ecDNA characteristics. Amplification of ecDNA was observed in 7 of these cancer types, with no instances found in normal blood cells. Patients with leukemia carrying ecDNA showed a low induction therapy remission rate (<30 %), a high relapse rate (75 %) among those who achieved complete remission, and a significantly lower survival rate compared to the general leukemia population, even those with complex chromosomal karyotypes. Among the 55 identified ecDNA amplicons, 268 genes were detected, of which 38 are known cancer-related genes exhibiting significantly increased copy numbers. By integrating RNA-Seq data, we discovered that the increased copy number, resulting in a higher amount of available DNA templates, indeed leads to the elevated expression of genes encoded on ecDNA. Additionally, through the integration of H3K4me3/H3K27ac chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin with sequencing, and high-throughput chromosome conformation capture data, we identified that ecDNA amplifications can also facilitate efficient, copy number-independent amplification of oncogenes. This process is linked to active histone modifications, improved chromatin accessibility, and enhancer hijacking, all of which are effects of ecDNA amplification. Mechanistically, chromothripsis and dysfunction of the DNA repair pathway can, to some extent, explain the origin of ecDNA.


Assuntos
Amplificação de Genes , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Variações do Número de Cópias de DNA
14.
ACS Nano ; 18(26): 16982-16993, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900971

RESUMO

The structure collapse issues have long restricted the application of polycrystalline LiNixCoyMn1-x-yO2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs' cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g-1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g-1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.

15.
J Ethnopharmacol ; 333: 118438, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38848972

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperlipidemia as a major health issue has attracted much public attention. As a geographical indication product of China, Liupao tea (LPT) is a typical representative of traditional Chinese dark tea that has shown good potential in regulating glucose and lipid metabolism. LPT has important medicinal value in hyperlipidemia prevention. However, the active ingredients and metabolic mechanisms by which LPT alleviates hyperlipidemia remain unclear. AIM OF THE STUDY: This study aimed to systematically investigate the metabolic mechanisms and active ingredients of LPT extract in alleviating hyperlipidemia. MATERIALS AND METHODS: Firstly, we developed a mouse model of hyperlipidemia to study the pharmacodynamics of LPT. Subsequently, network pharmacology and molecular docking were performed to predict the potential key active ingredients and core targets of LPT against hyperlipidemia. LC-MS/MS was used to validate the identity of key active ingredients in LPT with chemical standards. Finally, the effect and metabolic mechanisms of LPT extract in alleviating hyperlipidemia were investigated by integrating metabolomic, lipidomic, and gut microbiome analyses. RESULTS: Results showed that LPT extract effectively improved hyperlipidemia by suppressing weight gain, remedying dysregulation of glucose and lipid metabolism, and reducing hepatic damage. Network pharmacology analysis and molecular docking suggested that four potential active ingredients and seven potential core targets were closely associated with roles for hyperlipidemia treatment. Ellagic acid, catechin, and naringenin were considered to be the key active ingredients of LPT alleviating hyperlipidemia. Additionally, LPT extract modulated the mRNA expression levels of Fxr, Cyp7a1, Cyp8b1, and Cyp27a1 associated with bile acid (BA) metabolism, mitigated the disturbances of BA and glycerophospholipid (GP) metabolism in hyperlipidemia mice. Combining fecal microbiota transplantation and correlation analysis, LPT extract effectively improved species diversity and abundance of gut microbiota, particularly the BA and GP metabolism-related gut microbiota, in the hyperlipidemia mice. CONCLUSIONS: LPT extract ameliorated hyperlipidemia by modulating GP and BA metabolism by regulating Lactobacillus and Dubosiella, thereby alleviating hyperlipidemia. Three active ingredients of LPT served as the key factors in exerting an improvement on hyperlipidemia. These findings provide new insights into the active ingredients and metabolic mechanisms of LPT in improving hyperlipidemia, suggesting that LPT can be used to prevent and therapeutic hyperlipidemia.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Simulação de Acoplamento Molecular , Chá , Animais , Hiperlipidemias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Chá/química , Biologia Computacional , Farmacologia em Rede , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipolipemiantes/farmacologia , Hipolipemiantes/isolamento & purificação , Hipolipemiantes/uso terapêutico , Modelos Animais de Doenças , Metabolômica , Multiômica
16.
Opt Express ; 32(10): 17535-17550, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858935

RESUMO

Physical processes in the Fourier domain play a crucial role in various applications such as spectroscopy, quantum technology, ranging, radio-astronomy, and telecommunications. However, the presence of stochastic noise poses a significant challenge in the detection of broadband spectral waveforms, especially those with limited power. In this study, we propose and experimentally demonstrate a cross-phase modulation (XPM) based spectral Talbot amplifier to recover the broadband spectral waveforms in high fidelity. Through the combination of spectral phase filtering and XPM nonlinear effect in an all-fiber configuration, we demonstrate spectral purification of THz-bandwidth spectral waveforms submerged in strong noise. The proposed spectral Talbot amplifier provides tunable amplification factors from 3 to 10, achieved by flexible control on the temporal waveform of the pump and the net dispersion. We demonstrate up to 10-dB remarkable improvement on optical signal-to-noise ratio (OSNR) while preserving the spectral envelope. Furthermore, our system allows frequency-selective reconstruction of noisy input spectra, introducing a new level of flexibility for spectral recovery and information extraction. We also evaluate numerically the impact of pump intensity deviation on the reconstructed spectral waveforms. Our all-optical approach presents a powerful means for effective recovery of broadband spectral waveforms, enabling information extraction from a noise-buried background.

17.
Opt Express ; 32(11): 19508-19516, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859084

RESUMO

In this paper, we presented a novel double-layer light-trapping structure consisting of nanopores and nanograting positioned on both the surface and bottom of a gallium oxide-based solar-blind photodetector. Utilizing the finite element method (FEM), we thoroughly investigated the light absorption enhancement capabilities of this innovative design. The simulation results show that the double-layer nanostructure effectively combines the light absorption advantages of nanopores and nanogratings. Compared with thin film devices and devices with only nanopore or nanograting structures, double-layer nanostructured devices have a higher light absorption, achieving high light absorption in the solar blind area.

18.
Nanomaterials (Basel) ; 14(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869593

RESUMO

Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g-1 at 1 A g-1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance.

19.
BMC Endocr Disord ; 24(1): 81, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38890674

RESUMO

PURPOSE: Previous studies have suggested that obesity defined by body mass index(BMI) is a protective factor for bone mineral density(BMD), but have overlooked the potential influence of different types of obesity. This study aims to evaluate the correlation between abdominal obesity index A Body Shape Index(ABSI) and adolescent bone density, and analyze the relationship between abdominal obesity and bone metabolism. METHODS: A total of 1557 adolescent participants were included in NHANES from 2007 to 2018. Calculate the ABSI using a specific formula that takes into account waist circumference and BMI. A weighted multiple linear regression model is used to evaluate the linear correlation between ABSI and BMD. Forest plots are used to analyze the correlations between subgroups, and cubic splines are limited to evaluate the nonlinear correlations and saturation effects between ABSI and BMD. RESULTS: After adjusting for confounding factors, there was a significant linear correlation (P < 0.01) between ABSI and femoral BMD, both as a continuous variable and an ordered categorical variable. The restrictive cubic spline curve indicates a significant nonlinear correlation and saturation effect between adolescent ABSI and BMD. CONCLUSION: Research has shown a significant negative correlation between ABSI and BMD at the four detection sites of the femur, and this correlation may vary slightly due to age, race, family income, and different detection sites. The research results indicate that compared to overall body weight, fat distribution and content may be more closely related to bone metabolism.


Assuntos
Índice de Massa Corporal , Densidade Óssea , Desenvolvimento Ósseo , Inquéritos Nutricionais , Obesidade Abdominal , Humanos , Adolescente , Obesidade Abdominal/complicações , Masculino , Feminino , Desenvolvimento Ósseo/fisiologia , Estudos Transversais , Criança , Circunferência da Cintura , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA