Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Adv Sci (Weinh) ; : e2309752, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119903

RESUMO

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.

2.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987851

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Assuntos
Senescência Celular , Células Epiteliais , Exossomos , Túbulos Renais , Macrófagos , MicroRNAs , Telômero , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Exossomos/metabolismo , Exossomos/genética , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos , Telômero/genética , Telômero/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Masculino , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fibrose/genética , Angiotensina II
4.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904017

RESUMO

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Assuntos
Injúria Renal Aguda , Linfócitos T CD8-Positivos , Insuficiência Renal Crônica , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/imunologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Receptores CXCR6/metabolismo , Quimiocina CXCL16/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Apoptose
5.
Kidney Dis (Basel) ; 10(3): 193-199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835405

RESUMO

Introduction: Roxadustat, the first-in-class drug for the treatment of renal anemia, has demonstrated efficacy in renal anemia with microinflammation. Additional data are needed regarding the efficacy of roxadustat on renal anemia with systemic macroinflammation. Methods: Three cohorts of renal anemia based on the basic level of high-sensitivity CRP were included. Patients with hsCRP ≤2 mg/L were selected as non-inflammation (NI) group; 2< hsCRP ≤10 mg/L as microinflammation (MI) group; hsCRP≥10 mg/L as macroinflammation (MA) group. Patients received oral roxadustat three times per week for 52 weeks. The primary end point was the hemoglobin level over weeks 12-52. The second end point was the cumulative proportion of patients achieving hemoglobin response by the end of week 12. Results: A total of 107 patients with chronic kidney diseases (CKDs) were enrolled. Overall, the baseline hemoglobin level of patients was 79.99 ± 11.20 g/L. Roxadustat could significantly increase the hemoglobin level in all of the three groups and did not show any significant difference (p > 0.05, respectively). Meanwhile, compared with that of the NI group, there was no significant difference in hemoglobin response rate in the MA group both at week 12 (p = 0.06; 95% confidence interval [CI], 0.9531-13.75) and week 52 (p = 0.37; 95% CI, 0.5080-7.937). Moreover, the hemoglobin response was independent of baseline hsCRP level (p = 0.72, 95% CI, -0.1139 to 0.0794). More importantly, roxadustat significantly reduced ferritin and serum iron levels and increased total iron-binding capacity in the three groups, which showed no significant differences among the three groups (p > 0.05, respectively). Conclusion: Roxadustat significantly improves anemia in CKD patients with systemic macroinflammation.

6.
Br J Pharmacol ; 181(17): 3098-3117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38698737

RESUMO

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.


Assuntos
Angiotensina II , Fibrose , Hipertensão , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Vimentina , Animais , Angiotensina II/toxicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fibrose/induzido quimicamente , Camundongos , Humanos , Vimentina/metabolismo , Masculino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Camundongos Knockout , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética
7.
Heliyon ; 10(7): e28985, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617907

RESUMO

Background: Nephronophthisis (NPHP) is a rare autosomal recessive inherited tubulointerstitial nephropathy, the most prevalent genetic cause of end-stage renal disease (ESRD) in children. Convincing evidence indicated that the overall prevalence of NPHP in adult-onset ESRD is very likely to be an underestimation. Therefore, understanding the genetic background and clinicopathologic features of adult-onset NPHP is warranted. Case presentation: we reported one intriguing case with concurrent NPHP3 c.2694-2_2694-1delAG (splicing) variant and c.1082C > G (p.S361C) variant. A 48-year-old male was admitted to our hospital, complained about renal dysfunction for 10 years, and found right renal space-occupying lesion for 1 week. One of the most interesting clinical features is adult-onset ESRD, which differs from previous cases. Another discovery of this study is that the NPHP harboring NPHP3 deletion may be associated with clear cell renal cell carcinoma. Conclusion: In conclusion, we report two mutations in the NPHP3 gene that cause NPHP with adult-onset ESRD and renal clear cell carcinoma in a Chinese family, enriching the clinical features of NPHP.

8.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Quinases Ciclina-Dependentes , Fator 1 de Crescimento de Fibroblastos , Elongação da Transcrição Genética , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Quinases Ciclina-Dependentes/genética , Fator 1 de Crescimento de Fibroblastos/genética , Instabilidade Genômica , Rim
9.
Sci Rep ; 14(1): 6574, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503865

RESUMO

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Proteínas Quinases , Quinases Ciclina-Dependentes/metabolismo , Prognóstico , Carcinogênese , Biomarcadores Tumorais/metabolismo , Imunomodulação/genética
10.
Acta Physiol (Oxf) ; 240(4): e14121, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38409944

RESUMO

AIM: Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS: ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS: We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION: Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.


Assuntos
Injúria Renal Aguda , Doenças Mitocondriais , Traumatismo por Reperfusão , Camundongos , Animais , NF-kappa B/metabolismo , Espectrometria de Massas em Tandem , Rim/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Reperfusão , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Isquemia/patologia , Apoptose
11.
Diabetol Metab Syndr ; 16(1): 40, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341600

RESUMO

BACKGROUND: Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/Val on tubulointerstitial fibrosis in DKD is still largely unclear. METHODS: Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro. RESULTS: We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the presence of Sirt1 specific inhibitor. CONCLUSIONS: Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the progression of DKD in clinical practice.

12.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37943391

RESUMO

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Homeostase , Mitocôndrias , Fibrose
13.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596398

RESUMO

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Diabetes Mellitus/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Exossomos/metabolismo , Fibrose , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Células Satélites de Músculo Esquelético/metabolismo , Complicações do Diabetes/terapia
14.
Cell Death Dis ; 14(5): 339, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225700

RESUMO

The transcription factor hypoxia-inducible factor-1α (HIF-1α), as a master regulator of adaptive responses to hypoxia, possesses two transcriptional activation domains [TAD, N-terminal (NTAD), and C-terminal (CTAD)]. Although the roles of HIF-1α NTAD in kidney diseases have been recognized, the exact effects of HIF-1α CTAD in kidney diseases are poorly understood. Here, two independent mouse models of hypoxia-induced kidney injury were established using HIF-1α CTAD knockout (HIF-1α CTAD-/-) mice. Furthermore, hexokinase 2 (HK2) and mitophagy pathway are modulated using genetic and pharmacological methods, respectively. We demonstrated that HIF-1α CTAD-/- aggravated kidney injury in two independent mouse models of hypoxia-induced kidney injury, including ischemia/reperfusion-induced kidney injury and unilateral ureteral obstruction-induced nephropathy. Mechanistically, we found that HIF-1α CTAD could transcriptionally regulate HK2 and subsequently ameliorate hypoxia-induced tubule injury. Furthermore, it was found that HK2 deficiency contributed to severe renal injury through mitophagy inhibition, while mitophagy activation using urolithin A could significantly protect against hypoxia-induced kidney injury in HIF-1α C-TAD-/- mice. Our findings suggested that the HIF-1α CTAD-HK2 pathway represents a novel mechanism of kidney response to hypoxia, which provides a promising therapeutic strategy for hypoxia-induced kidney injury.


Assuntos
Hexoquinase , Subunidade alfa do Fator 1 Induzível por Hipóxia , Traumatismo por Reperfusão , Animais , Camundongos , Modelos Animais de Doenças , Hexoquinase/genética , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rim , Mitofagia , Ativação Transcricional
15.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039838

RESUMO

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Assuntos
Exossomos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fibrose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
16.
Mol Cell Endocrinol ; 568-569: 111913, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990198

RESUMO

Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Podócitos , Humanos , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Exossomos/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio , Diabetes Mellitus/metabolismo
18.
Mol Ther ; 31(5): 1437-1450, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35982620

RESUMO

Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Animais , Camundongos , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo
19.
NPJ Regen Med ; 7(1): 73, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528739

RESUMO

Peritubular capillaries (PTCs) are closely related to renal tubules in structure and function, and both are pivotal regulators in the development and progression of acute kidney injury (AKI). However, the mechanisms that underlie the interaction between PTCs and tubules during AKI remain unclear. Here we explored a new mode of tubulovascular crosstalk mediated by small extracellular vesicles (sEV) after AKI. In response to renal ischemia/reperfusion (I/R) injury, endothelial proliferation of PTCs and tubular expression of vascular endothelial growth factor-A (VEGF-A) were increased, accompanied by a remarkable redistribution of cytoplasmic VEGF-A to the basolateral side of tubular cells. Meanwhile, the secretion mode of VEGF-A was converted in the injured tubular cells, which showed a much greater tendency to secrete VEGF-A via sEV other than the free form. Interestingly, tubular cell-derived VEGF-A-enriched sEV (sEV-VEGF-A) turned out to promote endothelial proliferation which was regulated by VEGF receptors 1 and 2. Furthermore, inhibition of renal sEV secretion by Rab27a knockdown resulted in a significant decrease in the proliferation of peritubular endothelial cells in vivo. Importantly, taking advantage of the newly recognized endogenous repair response of PTCs, exogenous supplementation of VEGF-A + sEV efficiently recused PTC rarefaction, improved renal perfusion, and halted the AKI to CKD transition. Taken together, our study uncovered a novel intrinsic repair response after AKI through renal tubule-PTC crosstalk via sEV-VEGF-A, which could be exploited as a promising therapeutic angiogenesis strategy in diseases with ischemia.

20.
J Biol Chem ; 298(12): 102605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257404

RESUMO

Podocyte injury is a characteristic pathological hallmark of diabetic nephropathy (DN). However, the exact mechanism of podocyte injury in DN is incompletely understood. This study was conducted using db/db mice and immortalized mouse podocytes. High-throughput sequencing was used to identify the differentially expressed long noncoding RNAs in kidney of db/db mice. The lentiviral shRNA directed against long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) or microRNA-26a-5p (miR-26a-5p) agomir was used to treat db/db mice to regulate the SNHG5/miR-26a-5p pathway. Here, we found that the expression of transient receptor potential canonical type 6 (TRPC6) was significantly increased in injured podocytes under the condition of DN, which was associated with markedly decreased miR-26a-5p. We determined that miR-26a-5p overexpression ameliorated podocyte injury in DN via binding to 3'-UTR of Trpc6, as evidenced by the markedly reduced activity of luciferase reporters by miR-26a-5p mimic. Then, the upregulated SNHG5 in podocytes and kidney in DN was identified, and it was proved to sponge to miR-26a-5p directly using luciferase activity, RNA immunoprecipitation, and RNA pull-down assay. Knockdown of SNHG5 attenuated podocyte injury in vitro, accompanied by an increased expression of miR-26a-5p and decreased expression of TRPC6, demonstrating that SNHG5 promoted podocyte injury by controlling the miR-26a-5p/TRPC6 pathway. Moreover, knockdown of SNHG5 protects against podocyte injury and progression of DN in vivo. In conclusion, SNHG5 promotes podocyte injury via the miR-26a-5p/TRPC6 pathway in DN. Our findings provide novel insights into the pathophysiology of podocyte injury and a potential new therapeutic strategy for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Podócitos , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias Diabéticas/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Podócitos/metabolismo , Apoptose/genética , Diabetes Mellitus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA