Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(32): 78376-78393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268809

RESUMO

Natural thermal and mineral waters are widely distributed along the Hellenic region and are related to the geodynamic regime of the country. The diverse lithological and tectonic settings they are found in reflect the great variability in their chemical and isotopic composition. The current study presents 276 (published and unpublished) trace element water data and discusses the sources and processes affecting the water by taking into consideration the framework of their geographic distribution. The dataset is divided in groups using temperature- and pH-related criteria. Results yield a wide range of concentrations, often related to the solubility properties of the individual elements and the factors impacting them (i.e. temperature, acidity, redox conditions and salinity). Many elements (e.g. alkalis, Ti, Sr, As and Tl) present a good correlation with temperature, which is in cases impacted by water rock interactions, while others (e.g. Be, Al, Cu, Se, Cd) exhibit either no relation or an inverse correlation with T possibly because they become oversaturated at higher temperatures in solid phases. A moderately constant inverse correlation is noticed for the vast majority of trace elements and pH, whereas no relationship between trace element concentrations and Eh was found. Seawater contamination and water-rock interaction seem to be the main natural processes that influence both salinity and elemental content. All in all, Greek thermomineral waters exceed occasionally the accepted limits representing in such cases serious harm to the environment and probably indirectly (through the water cycle) to human health.


Assuntos
Águas Minerais , Oligoelementos , Poluentes Químicos da Água , Humanos , Oligoelementos/análise , Grécia , Monitoramento Ambiental/métodos , Água do Mar , Poluentes Químicos da Água/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-36900908

RESUMO

The chemical composition of rainwater was studied in two highly-industrialised areas in Sicily (southern Italy), between June 2018 and July 2019. The study areas were characterised by large oil refining plants and other industrial hubs whose processes contribute to the release of large amounts of gaseous species that can affect the chemical composition of atmospheric deposition As in most of the Mediterranean area, rainwater acidity (ranging in the study area between 3.9 and 8.3) was buffered by the dissolution of abundant geogenic carbonate aerosol. In particular, calcium and magnesium cations showed the highest pH-neutralizing factor, with ~92% of the acidity brought by SO42- and NO3- neutralized by alkaline dust. The lowest pH values were observed in samples collected after abundant rain periods, characterised by a less significant dry deposition of alkaline materials. Electrical Conductivity (ranging between 7 µS cm-1 and 396 µS cm-1) was inversely correlated with the amount of rainfall measured in the two areas. Concentrations of major ionic species followed the sequence Cl- > Na+ > SO42- ≃ HCO3- > ≃ Ca2+ > NO3- > Mg2+ > K+ > F-. High loads of Na+ and Cl- (with a calculated R2 = 0.99) reflected proximity to the sea. Calcium, potassium, and non-sea-salt magnesium had a prevalent crustal origin. Non-sea salt sulphate, nitrate, and fluoride can be attributed mainly to anthropogenic sources. Mt. Etna, during eruptive periods, may be also considered, on a regional scale, a significant source for fluoride, non-sea salt sulphate, and even chloride.


Assuntos
Cálcio , Magnésio , Sicília , Cálcio/análise , Fluoretos , Monitoramento Ambiental , Íons , Chuva , Cloretos , Sulfatos , Cálcio da Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA