RESUMO
Proteolysis Targeting Chimeras (PROTAC) technology has emerged as a promising approach for targeted protein degradation. In this study, we focused on tyrosinase (TYR), a key enzyme involved in melanin synthesis and pigmentation. For this target, we designed and synthesized a series of PROTACs (D3-D9), employing Rhein as the target protein-ligand. Through some experimental tests, we made a significant discovery. Preliminary experimental results show that the most promising compound (D6) demonstrated the ability to degrade MITF and inhibit the expression and TYR in B16-F10 cells, effectively suppressing melanogenesis in zebrafish. Notably, at equivalent concentrations, the whitening effect of D6 surpassed that of its precursor Rhein and was even comparable to that of the well-established whitening agent, ß-arbutin. Validating experiments further revealed that the action of D6 was reliant on the E3 ligand, indicating its capacity to degrade TYR and MITF through the ubiquitination pathway. Whether D6 acts directly on TYR or MITF needs to be further explored. These compelling results underscore the tremendous whitening potential of D6, suggesting its suitability as a valuable lead for whitening agents and its potential to expand the range of whitening cosmetic products.
Assuntos
Melaninas , Melanoma Experimental , Animais , Quimera de Direcionamento de Proteólise , Peixe-Zebra , Ligantes , Monofenol Mono-Oxigenase , ProteóliseRESUMO
BACKGROUND: Prostate cancer is a disease that seriously troubles men. However, there are some inevitable limitations in interventional therapy for prostate cancer patients at present, most of which are caused by low selectivity and high toxic side effects due to unclear drug targets. In this study, we identified the target protein of Curcusone C with anti-prostate cancer potential activity and verified its target and mechanism of action. METHODS: Click chemistry-activity based proteomics profiling (CC-ABPP) method was used to find target protein of Curcusone C against prostate cancer. Competitive CC-ABPP, drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) methods were used to verifying the target protein. Moreover, potential mechanism was validated by western blot in vitro and by hematoxylin-eosin (HE) staining, detection of apoptosis in tumor tissue (TUNEL), and immunohistochemical (IHC) in vivo. RESULTS: We found that poly(rC)-binding protein 2 (PCBP2) was the target protein of Curcusone C. In addition, Curcusone C might disrupt the Bax/Bcl-2 balance in PC-3 cells by inhibiting the expression of the target protein PCBP2, thereby inducing mitochondrial damage and activation of the mitochondrial apoptosis pathway, and ultimately inducing apoptosis of prostate cancer cells. CONCLUSIONS: Curcusone C is a potential compound with anti-prostate cancer activity, and this effect occurs by targeting the PCBP2 protein, which in turn may affect the TGF/Smad signaling pathway and Bax/Bcl-2 balance. Our results laid a material and theoretical foundation for Curcusone C, to be widely used in anti-prostate cancer.
Assuntos
Proteínas de Transporte , Neoplasias da Próstata , Masculino , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteômica , Química Click , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Próstata/patologia , Apoptose , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismoRESUMO
A series of Icariside II (ICS II) derivatives were synthesized, and their structure-activity relationships (SARs) were studied in this paper. The in vitro antitumor activities towards human breast cancer cell lines (MCF-7) were evaluated by Cell Counting Kit-8 (CCK-8 kit). Preliminary results showed that, compared with ICS II, most of the derivatives displayed good micromole level activities. Among the series of derivatives, the S27, which totally acetylated hydroxyl of ICS II, possessed highest cytotoxicity, with IC50 values of 0.70 ± 0.08 µM. Furthermore, compound S27 showed better selectivity than ICS II for cancer cells over normal cells. Our findings indicate that compound S27 may be a promising anticancer lead candidate drug.
Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Proliferação de Células , Relação Estrutura-Atividade , Flavonoides/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a DrogaRESUMO
4ß-Hydroxywithanolide E, which can be obtained in large amounts from the Physalis genus, possessed anti-proliferative effects on a variety of human cancer cell lines. For discussing its anti-tumor structure-activity relationship, a series of 4ß-hydroxywithanolide E derivatives (1-17) were synthesized and evaluated for their antitumor activity in vitro towards acute promyelocytic leukemia NB4 cell line by the Alarma blue assay. Cytotoxicity data revealed that the enone structure and C-4 hydroxyl substituents of ring A, together with the side chain (C-20-C-28) play an important effect on the cytotoxicity.
Assuntos
Vitanolídeos , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Physalis , Relação Estrutura-AtividadeRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha curcas L. (Euphorbiaceae), as a drought resistant shrub mainly cultivated in tropical and subtropical areas worldwide, is widely used as traditional medicine to cure arthritis, dysentery, abscess and pneumonia in Asian, African and South American folklores. The methanolic extracts of the roots have been revealed the anti-inflammatory activity in vivo and vitro. AIM OF STUDY: This research aimed to provide promising anti-inflammatory candidates from the roots of J. curcas. In addition, RNA-Seq was conducted to give targeted genes involved in the anti-inflammatory action. MATERIALS AND METHODS: The diterpenoids were isolated from the CH2Cl2 fraction of the methanolic extract from the roots of J. curcas by column chromatography (CC): silica gel, Sephadex LH-20, ODS, semi-preparative reversed-phase high-performance liquid chromatography (HPLC). The structures were identified based on HR-ESI-MS and 1D, 2D-NMR spectroscopic analysis. Their anti-inflammatory effects were tested on lipopolysaccharide (LPS, 500 ng/mL)-stimulated murine RAW264.7 macrophages. Furthermore, we conducted transcriptome-wide RNA sequencing to profile gene expression alterations in LPS-induced RAW264.7 cells upon treatment with jatrocurcasenone I (4) and analyzed the underlying genes targeted by this compound. RESULTS: Six diterpenoids were obtained from J. curcas, and four of them were identified to be new lathyrane diterpenoids: jatrocurcasenones F-I (1-4). Compounds 3 and 4 exhibited potent inhibitory activities against LPS-induced nitric oxide (NO) production in RAW264.7 cells with IC50 values of 11.28 µM and 7.71 µM, respectively. Western blotting analysis showed that the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were suppressed with the supplementation of 3 and 4. The results of RNA-seq showed that 4 (20 µM) exhibited regulation on the 587 differentially expressed genes (DEGs) induced by LPS (500 ng/mL). Transcriptome-wide RNA sequencing indicated that the protective activity of 4 supplementation was most likely driven by modulating expression levels of IL-1α, IL-1ß, IL-1f6, IL-6, IL-1rn, IL-27, Ccl2, Ccl5, Ccl7, Ccl9, Ccl22, Cxcl10, Tnfsf12, Tnfsf15, Lta, Trim25, Bcl2a1a, Dusp1, Dusp2, Ptgs2, Edn1 and Nr4a1. CONCLUSIONS: This study offered four new lathyrane diterpenoids, of them, jatrocurcasenone I (4) showed significant anti-inflammatory activity. RNA-Seq suggested that jatrocurcasenone I (4) could be a candidate drug for the prevention inflammation-mediated diseases by modulating 24 candidate DEGs.
Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Jatropha , Raízes de Plantas , Animais , Anti-Inflamatórios/isolamento & purificação , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7RESUMO
Reactive oxygen/nitrogen species generated in the human body can cause oxidative damage associated with many degenerative diseases such as atherosclerosis, dementia, coronary heart diseases, aging, and cancer. There is a great interest in developing new antioxidants from Ganoderma fungus due to its low toxicity. As part of our ongoing search for antioxidative constituents from the fruiting bodies of Ganoderma lucidum, the chemical constituents were investigated and seven secondary metabolites, including one new lanostane triterpene (1), two known aromatic meroterpenoids (6-7), and four known triterpenes (2-5), were isolated by a series of chromatographic methods. The structures of the seven compounds were elucidated by spectroscopic techniques. The isolated compounds were tested in vitro for antioxidant potencies and neuroprotective activities against H2O2 and aged Aß-induced cell death in SH-SY5Y cells. As a result, compounds 1, 6, and 7 exhibited potent antioxidant and neuroprotective activities. Additionally, all isolated compounds were tested for radical scavenging activities. Compounds 6 and 7 showed the comparable free radical scavenging activities with the standard drug in both ABTS (2, 2'-azobis (3-ethylbenzothiazole-6-sulfonaic acid)) and ORAC (oxygen radical absorbance capacity) experiments. The results from this study suggested that G. lucidum and its metabolites (especially the meroterpenoids) may be potential functional food ingredients for the antioxidation and prevention of neurogenerative diseases.
Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Reishi/química , Terpenos/química , Terpenos/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Terpenos/isolamento & purificação , Triterpenos/isolamento & purificaçãoRESUMO
Dimericursones A and B (1 and 2), two unprecedented hexacyclic dimeric diterpenoids, were obtained from the root barks of Jatropha curcas. Their structures were elucidated by extensive spectroscopic analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Dimericursone B (2) showed significant inhibition on nitric oxide production of lipopolysaccharide-induced RAW264.7 macrophages with IC50 values of 5.65 µM.
Assuntos
Anti-Inflamatórios/química , Dimerização , Diterpenos/química , Jatropha/química , Raízes de Plantas/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Camundongos , Modelos Moleculares , Conformação Molecular , Células RAW 264.7RESUMO
Ganoderma fungi have long been used as a famous traditional medicine and food in country of East Asia. In this work, two new farnesyl phenolic compounds, ganoduriporols A and B (1 and 2), were isolated from the fruiting bodies of Ganoderma duripora, and their structures were elucidated using various spectroscopic methods. Anti-inflammatory activities were assayed and evaluated for the two compounds. Ganoduriporols A and B exhibited dose-dependent anti-inflammatory effects in RAW 264.7 cells. Furthermore, ganoduriporol A was demonstrated to inhibit the production of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and prostaglandin E2 (PGE2) through the suppression of COX-2, MAPK and NF-κB signaling pathway in LPS-induced macrophage cells. These results suggested that these two new farnesyl phenolic compounds and the fruiting body of G. duripora could serve as anti-inflammatory agents for medicinal use or functional food.
Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Farneseno Álcool/análogos & derivados , Farneseno Álcool/farmacologia , Ganoderma/química , Fenóis/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Chemical investigation on ethyl acetate extract of the calyces of Nicandra physaloides resulted in the isolation of three new withanolides named as nicphysatone A (1), nicphysatone B (2), nicphysatone C (3), together with five known withanolides, nic 17 (4), nic 7 (5), nic 2 (6), withahisolide G (7) and nicaphysalin B (8). The structures were determined by comprehensive spectroscopic experiments. The discovery enriched the diversity of natural withanolides and could serve as scaffolds for the synthesis of more potent modified withanolides.